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A B S T R A C T

Semantic memory, a repository for concepts and factual information, plays a vital role in acquiring and retrieving 
knowledge. This study explores the impact of age-related knowledge accumulation on semantic cognition, 
investigating whether a denser representational space affects retrieval processes. Using a semantic feature 
verification task, we employ both behavioral (reaction time; RT) and neurophysiological (event-related potential; 
ERP) measures to explore these dynamics across young and older adults. Findings revealed an age-related RT 
difference in retrieval of semantically incongruent features, indicative of increased semantic search demands 
with age. ERP results show attenuated N400 responses in older adults for congruent features, possibly reflecting 
increased semantic relatedness. The late frontal effect (LFE) shows sustained modulation in older adults, 
indicative of enhanced post-retrieval monitoring. We propose that this extended search through semantic 
memory reflects an increase in the number of features to evaluate. These results support the idea that aging leads 
to a more densely packed semantic space, impacting the speed and dynamics of semantic retrieval.

1. Introduction

Semantic memory serves as a comprehensive storage system for 
concepts and factual knowledge acquired throughout an individual’s 
lifetime. It plays a pivotal role in our ability to recall and integrate new 
events and information into existing mental representations, utilizing 
feature similarity as a crucial organizational principle (Rosch, 1975; 
Sajin and Connine, 2014; Smith et al., 1974). Semantic memory retrieval 
can be conceptualized as a search through a vast conceptual landscape, 
where the congruence between a retrieval cue and sought after target 
influences the likelihood of successful recall (Raaijmakers and Shiffrin, 
1980; Shiffrin and Steyvers, 1997; Thomson and Tulving, 1970). The 
dynamic interplay between semantic representation and semantic con
trol constitutes semantic cognition - our ability to use, manipulate and 
generalize knowledge (Ralph et al., 2017). Semantic representation re
fers to the encoding and storage of conceptual knowledge, while se
mantic control is the executive process that targets and retrieves that 
knowledge (Chiou et al., 2018). An outstanding question in our under
standing of semantic cognition is whether a greater accumulation of 
knowledge, as occurs in normal aging, results in an altered semantic 
search process because the representational space itself is denser with 
more features.

To investigate this question, we must first model semantic 

representational space. Early work on semantic memory conceptualized 
it as a network in which representations are structured hierarchically, 
with more general concepts at the top and more specific concepts at 
lower levels (Collins and Quillian, 1969, 1970; Rosch, 1975). An alter
native to network structures are feature comparison models (Smith 
et al., 1974) where words are represented as a collection of binary fea
tures (e.g. birds have wings, dogs do not have wings). The similarity of 
two concepts can be derived by the amount of overlapping features. 
Network and feature-based models both describe the interplay between 
a representational structure and a mechanism by which those repre
sentations are accessed but are limited in their ability to explain how 
knowledge is learned. To this end, distributional semantic models 
explicitly create representational spaces by learning statistical regular
ities from the environment (Griffiths et al., 2007). They leverage a 
formal cognitive mechanism to acquire semantic knowledge through 
repeated episodic experiences (Davis and Yee, 2021; Jones, 2019). Thus, 
the performance of distributional models is enhanced when they are 
trained on larger amounts of text (Malandrakis et al., 2013; Sahlgren and 
Lenci, 2016), mirroring the human experience of accumulating semantic 
knowledge as we age.

To demonstrate how knowledge accumulation with age might alter 
the density and associations in semantic space, let’s use the example of 
“pencil”. A young person might have fewer representations of a pencil 
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than an older adult who will have had more exposure to pencils; 
different colors and styles and uses across different environments. In this 
way, with age, a pencil becomes more similar to related concepts, such 
as artist, sketch or notepad because there is more chance of overlapping 
features between them (see schematic in Fig. 1 for age differences in 
semantic space). In the current study, we investigate this idea using a 
combination of behavioral reaction time (RT) and event-related poten
tial (ERP) measures to assess how a denser semantic space impacts the 
speed with which semantic features are searched for and evaluated. 
Younger and older adults performed a semantic feature verification task 
while EEG activity was recorded. Common nouns (target words) were 
paired with multi-word features that were either congruent, true fea
tures e.g. ‘pencil - made of lead’, or incongruent e.g. ‘pencil - is juicy’. 
For example, ‘pencil - has keys’ is considered semantically similar but 
incongruent because both ‘pencil’ and ’keys’ can be associated with 
writing tools—pencils are used for writing on paper, while keys are used 
for typing on a computer. Additionally, we manipulated the semantic 
similarity of the target-feature pairs according to a distributional model 
(Pennington et al., 2014), so that high-similarity pairs are more similar 
than low-similarity. Previous aging studies have manipulated either 
congruence (Alejandro et al., 2021; Packard et al., 2020), or similarity 
(Zhuang et al., 2016). However, in this novel study, we implement a 
design that manipulates both congruence and similarity to better un
derstand the influence, and interaction, of these semantic variables on 
retrieval from semantic memory in older adults.

Event-related potential (ERP) studies have provided insights into the 
temporal dynamics of memory search processes. ERP components, such 
as the N400 and, to an extent, the later-frontal effect (LFE) have been 
implicated in semantic processing and sustained memory retrieval, 
respectively (Kutas and Federmeier, 2011; Rugg and Curran, 2007). The 
N400 is known for its sensitivity to meaningful stimuli and semantic 
manipulations, making it a valuable tool for investigating how 
meaning-related information is stored in the brain (Kutas and Feder
meier, 2011; Rabovsky and McRae, 2014). Increased semantic similarity 
decreases N400 amplitude (Frank and Willems, 2017; Kounios and 
Holcomb, 1992), and recent work found that semantic surprise in an 
oddball task predicts N400 amplitude in single trials (Lindborg et al., 
2023). Prior studies have shown that in sentence comprehension tasks, 
compared to younger adults, older adults show reduced N400 responses 
to congruent vs. incongruent words (‘he shaved off his mustache and city 
(vs. beard)’), which are thought to be driven by decreases in older 
adults’ ability to make use of context information e.g. how predictable 
the final word of a sentence is (Federmeier and Kutas, 2005; Payne and 

Federmeier, 2018; Tiedt et al., 2020; Wlotko et al., 2012; Wlotko and 
Federmeier, 2012). We would argue that this reduced ability to use 
context, and attenuated N400, may result from an age-related increase 
in the density of semantic space. That is, due to a more densely popu
lated semantic space, the semantic violation effect (city vs. beard) is 
reduced with age because target words have more nearby associates. An 
additional component of interest is the late frontal effect (LFE), which 
has been associated with controlled retrieval processes such as 
post-retrieval monitoring or additional retrieval attempts (Curran et al., 
2001; Donaldson and Rugg, 1999). Importantly, Hayama et al. (2008)
found that the LFE is observed in semantic and episodic decisions, 
suggesting it reflects sustained, generic retrieval monitoring across 
memory domains. Others have shown that older and younger adults 
show similar recruitment of post-retrieval monitoring processes and the 
LFE (Horne et al., 2020).

If the process of aging leads to an accumulation of semantic knowl
edge and a denser semantic feature space, we predict that older adults 
will be slower than younger adults in one particular condition - rejecting 
highly similar but incongruent features (pencil - has keys). The excellent 
temporal resolution of ERPs allows us to test the hypothesis that due to a 
more densely populated semantic space, older adults will exhibit a 
smaller reduction in N400 amplitude when processing semantically 
similar features compared to younger adults. This suggests that the N400 
effect, which typically decreases with higher semantic similarity, will be 
less pronounced in older adults. We also expect to find sustained mod
ulation of the LFE in older compared to younger adults when to-be- 
rejected features have higher feature similarity to targets despite being 
incongruent. Why do we predict a larger age effect for the feature sim
ilarity modulation in the congruent condition for the N400, and for the 
incongruent condition for the LFE? In congruent trials all features are 
true but differ in proximity to targets. For older adults, due to a denser 
semantic space, the effect of semantic similarity on the N400 component 
will be diminished, indicating a smaller difference in N400 amplitude 
between high and low similarity features because both high and low 
congruent features are possible and might have been experienced 
together before. By contrast for incongruent target-feature pairs, even 
older adults have not encountered low similarity features associated 
with a target (pencil - is juicy) and a large semantic violation and N400 
modulation by feature similarity should be observed for old and young 
alike. By contrast, the LFE reflects post-retrieval monitoring that is 
sustained particularly when decisions are difficult, or require additional 
evaluation (Cruse and Wilding, 2009). When features need to be rejected 
(i.e. incongruent condition), those high in similarity to the target word 

Fig. 1. Schematic of semantic vector space with aging as a model of knowledge accumulation. Older adults (left) have a denser semantic space, including 
associations between congruent and incongruent target feature pairs. Younger adults (right) have a sparser semantic memory space with less associations, and less 
competitors during semantic feature retrieval. The length of connections represents cosine distance in semantic vector space.

R.A. Cutler et al.                                                                                                                                                                                                                                Neuropsychologia 208 (2025) 109083 

2 



may require more evaluation than those low in similarity. This would be 
especially true for older adults if densely populated concepts share more 
overlapping features because a higher degree of semantic overlap is in 
conflict with the “no” response that they must produce for incongruent 
trials. Using age as a model for knowledge acquisition, we test the idea 
that older adults’ semantic memory is more densely packed with con
ceptual features, impacting the speed and dynamics of semantic 
retrieval.

2. Materials and methods

2.1. Participants

A total of 60 participants were recruited for the EEG study, divided 
into two groups: 30 younger adults (18 females, mean age = 21.26, SD 
= 2.49, age range: 18–28 years, mean years of education = 14.82, SD =
1.42) and 30 older adults (17 females, mean age = 69.5, SD = 5.46, age 
range: 60–77 years, mean years of education = 16.61, SD = 2.67). All 
subjects were right-handed, native English speakers and had normal or 
corrected vision. Participants were recruited from The University of 
Texas at Austin and the surrounding community, and they were 
compensated $20/hour. All subjects completed a health questionnaire, 
and no one reported any psychiatric or neurological disorders. Consent 
was obtained prior to the experiment in accordance with the UT Austin 
Institutional Review Board. Older adults completed a standardized 
cognitive assessment, the Mini-Mental State Examination (MMSE:Mol
loy et al., 1991 ), to ensure that group differences were due to healthy 
aging. All participants scored above 25 (range: 25–30, M = 28.56), the 
recommended cut-off for cognitive impairment (Crum et al., 1993).

2.2. Stimuli

Target words were 100 common nouns from a dataset of semantic 

feature production norms (McRae et al., 2005); a set of 541 living and 
nonliving basic-level concepts. In their study, Mcrae et al. (2005) had 
725 participants report up to 30 features for the concepts e.g. moose - 
‘has antlers’, ‘an herbivore’. We sampled 400 multiword features from the 
dataset: 200 were true features of a target (congruent), and 200 were 
randomly selected from other target words (incongruent), but manually 
confirmed to be unambiguously not a feature. Congruent and incon
gruent features were evenly split into high and low semantic similarity 
from the target word. High similarity target-feature pairs had a cosine 
similarity (1 - cosine distance) greater than or equal to 0.25, and low 
similarity target-feature pairs had a cosine similarity distance less than 
or equal to 0.15. These thresholds were set by taking 0.2060, the median 
cosine similarity of all of the target-feature pairs, and then adding a 
degree of separation between the high- and low-similarity conditions. 
This created a 2 × 2 design with 4 conditions: congruent/high similarity, 
congruent/low similarity, incongruent/high similarity and incon
gruent/low similarity. See Fig. 2a for an example target word, pencil, 
with all four stimuli conditions.

2.3. Semantic vector space

To model the organizational structure of semantic memory, we used 
Global Vectors (GloVe): a semantic vector space model of word repre
sentation (Pennington et al., 2014). GloVe is among several computa
tional models that quantifies the meaning of words by allocating each 
word a position within a high-dimensional vector space (Deerwester 
et al., 1990; Landauer and Dumais, 1997; Lund and Burgess, 1996; 
Steyvers et al., 2004). These models use linear algebraic techniques, 
such as singular value decomposition, to formulate vector representa
tions based on statistical information capturing the co-occurrence pat
terns of words within large text corpora. Standard distance measures are 
used to calculate the semantic similarity between words, in the current 
work we take the cosine angle between the target and feature vectors as 

Fig. 2. Schematic illustration of stimuli and trial-level experimental task design. (A) Example stimuli in each condition for target word pencil. Features are split 
by congruency (congruent, incongruent) and semantic similarity (high, low). The congruency of target-feature pairs is independent of their distance in semantic 
space. Congruent and incongruent features are distributed equally across the space. (B) Time sequence of a single trial.
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the cosine distance, and subtract it from 1 to find the cosine similarity, 
Cos(θ) (Kwantes, 2005). Values of Cos(θ) are bound between − 1 (exact 
opposite) and 1 (identical), and a value of 0 indicates that two words are 
not meaningfully related. In the current study, we create multi-word 
feature vectors by averaging the vectors of each of the content words 
within a feature (Pereira et al., 2018).

2.4. Experimental task

Subjects completed ten practice trials and 400 test trials across four 
blocks (100 in each block, randomized and evenly sampled from the four 
conditions). As seen in Fig. 2b, each trial began with a centrally- 
presented fixation (randomized between 350 and 750ms), followed by 
the presentation of a target word for 1500ms. We then included a fa
miliarity question to ensure that we were testing memory for known 
semantic features. Participants responded Yes or No to indicate if they 
were familiar with the target word or not. If they responded No, that trial 
ended, and the next one began. If they responded Yes, following another 
jittered fixation (300–600ms), a multi-word semantic feature was pre
sented below the target word for 1500ms. Participants then had 2500ms 
to make a keypress response (Yes or No), indicating whether they 
thought that feature was a true feature of the target word or not. If a 
keypress was not recorded after 2.5s, a ‘too slow!’ warning appeared for 
2000ms. Participants were instructed as follows: Please press YES if the 
feature is commonly considered to be true. For example, you would press YES 
for “bottle/holds water”, even though a bottle can also hold other beverages. 
Please press NO for features that are highly unlikely or untrue “bottle/made 
of silk".

2.5. EEG collection and preprocessing

EEG data were recorded from a 32-channel BrainProducts actiChamp 
system at 500 Hz sampling rate with 24-bit resolution. The electrodes 
were placed according to the 10–20 system with Cz channel as the online 
reference and Fpz as the ground electrode (Jasper, 1958). Electrode 
positions included: FP1, Fz, F3, F7, FT9, FC5, FC1, C3, T7, TP9, CP5, 
CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, CP6, CP2, C4, T8, FT10, FC6, 
FC2, F4, F8, FP2, O1, Oz, and O2. Two additional electrodes recorded 
horizontal electrooculogram (HEOG) at the lateral canthi of the left and 
right eyes and two electrodes placed superior and inferior to the right 
eye recorded vertical electrooculogram (VEOG).

EEGLAB was used for offline data analysis (Delorme and Makeig, 
2004). EEG data was re-referenced to the average of the left and right 
mastoid electrodes (TP9 and TP10), downsampled to 250 Hz and digi
tally band-pass filtered between 0.1 Hz and 80 Hz. Continuous data was 
epoched into time windows from 300ms before, and 1500ms after 
stimulus feature presentation. Epochs were baseline corrected using the 
300ms prior to feature onset. Noisy channels and epochs were rejected 
based on automated EEGLAB algorithms. Independent component 
analysis was applied using ICLabel to reject components that were 
classified as noise from eye movement, muscle or heart with >0.9 
probability (Pion-Tonachini et al., 2019).

2.6. Mass univariate ERP analysis

The ERP data was analyzed with a mass univariate permutation test, 
which allows for correction of multiple comparisons and rigorous con
trol of the family-wise error rate, while remaining statistically powerful 
(Fields, 2017; Groppe et al., 2011a, 2011b). These cluster permutation 
analyses offer a sensitive approach for analyzing ERP effects (Maris, 
2012; Maris and Oostenveld, 2007). This method recognizes that 
genuine ERP effects extend beyond individual data points and involve 
multiple channels activated over multiple time points. The analysis 
groups neighboring data points in space and time into clusters and 
calculates the probability of observing these clusters by chance. 
Importantly, low probabilities for one or more clusters (e.g. p < 0.05) 

don’t imply that the activation is localized to specific channels and time 
points within those clusters. Instead, it suggests differences between 
conditions (i.e., the data don’t share the same probability distribution). 
The channels and time points of the clusters provide suggestive evidence 
for the likely location and timing of stimuli-related activation (van Ede 
and Maris, 2016). Mass Univariate Analysis is designed to control for 
multiple comparisons across many data points, often focusing on the 
identification of significant clusters rather than individual effect sizes or 
CIs. As noted in Groppe et al., (2011c), the focus on permutation-based 
significance testing within this framework inherently limits the calcu
lation and interpretation of these measures. For this analysis, the ERP 
data were downsampled to 125 Hz.

2.7. ERP analysis

Following the identification of significant clusters using mass uni
variate analysis, we conducted separate analyses for the N400 and LFE 
components. For the N400, we focused on a time window of 350–550 ms 
post-stimulus at central and parietal electrode sites, which are typically 
sensitive to semantic processing. The mean amplitude was extracted for 
each condition, and a 2 × 2 × 2 repeated-measures ANOVA was per
formed with factors of Age Group (young, old), Congruence (congruent, 
incongruent), and Similarity (high, low). Similarly, for the LFE, we 
analyzed data from a later time window (800–1500 ms) at frontal 
electrode sites, again using repeated-measures ANOVA to examine in
teractions between these factors. This allows us to explore how age- 
related changes influence semantic processing at different stages of 
retrieval.

3. Results

3.1. Behavioral

We first aimed to confirm that our results are based on the congru
ence and similarity manipulations, and not age-related differences in 
familiarity with the words that potentially varied by condition. We fit a 2 
(Age Group: young, old) x 4 (Condition: congruent/high-similarity, 
congruent/low-similarity, incongruent/high-similarity, incongruent/ 
low-similarity) ANOVA to the familiarity responses (0 = not familiar, 1 
= familiar). There was a main effect of Age Group (F (1, 220) = 88.37, p 
< 0.001) due to the fact that older adults showed greater familiarity for 
the target words than did younger adults (Older: M = 0.99, SD = 0.006; 
Younger: M = 0.97, SD = 0.02). Importantly, there was no effect of 
Condition and no Age Group × Condition interaction, so subsequent 
behavioral and ERP results cannot be explained by differences in word 
familiarity.

Our main behavioral measure was reaction time for the congruency 
judgment (Yes/No for “is the feature a true feature of the target word?“). To 
analyze the reaction time data, we fitted a generalized linear mixed- 
effects model (GLMM) using the glmer function from the lme4 pack
age in R (Bates et al., 2015). GLMMs have the benefit of capturing the 
typical positively skewed reaction time distribution, without needing to 
transform the data (Lo and Andrews, 2015). The model included reac
tion time (RT) as the dependent variable and Age Group (2: young, old), 
Similarity (2: high, low), and Congruity (2: congruent, incongruent) as 
fixed effects, as well as their interactions. Years of education was 
included as a covariate because an independent t-test revealed that the 
two age groups significantly differed in years of education (t (58) =
− 3.01, p = 0.004). Younger adults (Mean = 14.82 years, SD = 1.42 
years) had fewer years of education compared to older adults (Mean =
16.61 years, SD = 2.67 years). A random intercept for subjects was 
included to account for the repeated measures design. Categorical var
iables were dummy-coded with “old” (Age Group), “high” (Similarity), 
and “congruent” (Congruity) as reference levels. Due to the skewness of 
the RT data, we specified a Gamma family with a log link function. The 
model was optimized using the ‘bobyqa’ optimizer to ensure 
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convergence.
We found significant main effects of Congruence (B = 0.3, t (245) =

3.72, p < 0.001) and Similarity (B = 0.03, t (245) = 3.46, p < 0.001). 
Specifically, participants responded faster to congruent features 
compared to incongruent features, and faster to high-similarity features 
compared to low-similarity features (see Fig. 3). There was also a sig
nificant interaction between Age Group and Congruence (B = 0.1, t 
(245) = 5.62, p < 0.001), indicating that older adults experience a more 
pronounced delay in RT for incongruent features compared to congruent 
ones, relative to younger adults. The interaction between Congruence 
and Similarity (B = − 0.07, t (245) = − 5.31, p < 0.001) shows that high 
similarity decreases RT for congruent features but increases RT for 
incongruent features. The main effect of Age and the interaction be
tween Similarity and Age were non-significant. The key behavioral 
finding is a significant three-way interaction between Age Group, Sim
ilarity, and Congruence on RT for semantic feature judgments (B =
− 0.09, t (245) = − 3.77, p < 0.001). This three-way interaction indicates 
that the influence of similarity on reaction time varies by age group and 
congruence condition. Specifically, high similarity facilitates faster re
sponses in congruent conditions but hinders responses in incongruent 
conditions, with older adults showing a greater delay in rejecting 
incongruent features with high similarity. The covariate of education 
was not significant (B = − 0.01, t (245) = − 0.56, p = 0.57), indicating 
that differences in reaction times between younger and older adults 
were not accounted for by variations in their years of education.

In addition to the primary GLMM analysis, we further investigated 
the relationship between cosine similarity as a continuous variable and 
RT by fitting separate linear models for each combination of age group 
and congruity condition (see Supplementary Fig. 1). The slopes of these 
relationships were examined to determine if they were statistically sig
nificant. For both younger and older adults, cosine similarity was 
significantly negatively correlated with RT in congruent conditions 
(Younger: B = − 0.179, p < 0.001; Older: B = − 0.155, p < 0.001), 
indicating that higher similarity facilitated faster retrieval. Conversely, 
cosine similarity was significantly positively correlated with RT in 
incongruent conditions (Younger: B = 0.201, p < 0.001; Older: B =
0.324, p < 0.001), suggesting that higher similarity increased retrieval 

difficulty. To statistically compare the slopes between younger and older 
adults for both congruent and incongruent conditions, we fit linear 
models including an interaction term between cosine similarity and age 
group. For the congruent condition, the interaction term between cosine 
similarity and age group was not significant (B = 0.0237, p = 0.584), 
suggesting that the effect of cosine similarity on reaction time did not 
significantly differ between younger and older adults. However, for the 
incongruent condition, the interaction term was significant (B = 0.123, 
p = 0.0128), indicating that the effect of cosine similarity on reaction 
time differed between younger and older adults. These findings suggest 
that while the effect of semantic similarity on retrieval speed remains 
comparable between age groups in congruent conditions, in incongruent 
conditions, older adults show a greater delay with higher similarity.

3.2. EEG

We first ran an omnibus 2 Age Group (young, old) x 4 condition 
(congruent/high-similarity, congruent/low-similarity, incongruent/ 
high-similarity, incongruent/low-similarity) factorial ANOVA to iden
tify spatial locations and time windows showing significant differences 
between conditions for more targeted analyses of the N400 and.

LFE. Raster plots showing significant effects can be seen in Fig. 4
along with representative ERPs for each group. We found a significant 
Age x Condition cluster (p = 0.0001) that spanned from 360 to 1480ms, 
and included 20 electrodes: C3, C4, CP1, CP2, CP5, CP6, F3, F4, F7, F8, 
FC1, FC2, FC5, FC6, FT10, FT9, Fz, P3, P4, and P8. The cluster had a 
temporal peak at 832ms and a spatial peak at electrode F3. We next used 
this subset of electrodes and time window for all further analysis in order 
to remove channels and time windows of no interest (i.e. insensitive to 
our task conditions). We conducted analyses comparing similarity con
ditions in subsequent analyses separately for congruent and incongruent 
conditions, focusing on specific regions and time windows of interest for 
the two ERPs of interest (N400 and LFE). We split analyses by congru
ency conditions because our hypotheses for these effects were related to 
semantic similarity and to reduce the influence of the response confound 
inherent in congruency comparisons (i.e. Yes and No responses for 
congruent and incongruent conditions, respectively).

For the N400 component, we predicted an age-related attenuation of 
the high vs. low target-feature similarity modulation, particularly for the 
congruent condition, because in a denser semantic space, as in aging, 
high and low similarity features should be more related and less unex
pected. We ran a two factorial ANOVA cluster analysis, one for the 
congruent trials and the other for the incongruent trials: Age Group 
(young, old) x 2 Similarity (high, low). We included the 20 condition- 
significant electrodes and timepoints between 350 and 550ms, in 
which the N400 component is observed. Raster plots and ERPs are 
shown in Fig. 5. For the congruent target-features pairs, we found a 
significant Age × Similarity interaction (p = 0.008) in a cluster of 
electrodes with a spatial peak at electrode F3 and a temporal peak at 
554ms. For the incongruent target-features pairs, we found a fronto
central cluster of electrodes in which there was an Age × Similarity 
interaction (p = 0.02) with a spatial peak at C3 and a temporal peak at 
554ms. As can be seen in Fig. 5, the N400 similarity modulation, indi
cating greater negativity in response to low similarity features compared 
to high similarity features, was larger for younger than older adults. To 
test whether the age-related attenuation differed between congruent and 
incongruent conditions, we ran a 2 Age (young, old) x 2 Congruence 
(congruent, incongruent) x 2 Channel (F3, C3) ANOVA on the similarity 
difference scores (high-low). We selected F3 and C3 because they were 
the spatial peak of the congruent and incongruent clusters, respectively. 
There was a main effect of Age (F (1,392) = 910.08, p < 0.001; η2

p =

0.70) and Congruence (F (1,392) = 90.27, p < 0.001; η2
p = 0.19). The 

interaction between Channel and Age was significant (F (1,392) =
13.26, p < 0.001; η2

p = 0.03), as was the three-way interaction between 
Channel, Age and Congruence (F (1, 392) = 5.32, p = 0.022; η2

p = 0.01). 
Critically, we found that the interaction between Congruence and Age 

Fig. 3. Behavioral results, reaction time as a function of condition. 
Younger adults (left) and older adults (right) show an interaction between 
similarity and condition. Highly similar target-feature pairs facilitate retrieval 
from semantic memory when features are congruent with target, but hinders 
retrieval when they are incongruent. Highly similar but incongruent condition 
shows significant age-related reaction time increase.
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was statistically significant (F (1, 392) = 152.95, p < 0.001; η2
p = 0.28). 

Follow-up analyses revealed significant N400 differences between high 
and low similarity features for both younger and older adults during 
congruent trials. High similarity pairs elicited a less negative N400 
amplitude for younger adults (t (198) = 4.14, p < 0.001), and for older 
adults (t (193) = 3.32, p < 0.001). In contrast, during incongruent trials, 
a significant difference in N400 amplitudes between high and low 
similarity pairs was observed for younger adults (t (198) = 2.35, p =
0.02), but not for older adults (t (193) = 1.92, p = 0.057). These results 
indicate that the influence of congruence on the difference in N400 
amplitude between high and low similarity pairs varies by age. Specif
ically, the neural signature of younger adults shows a significant N400 
difference between high and low similarity features across both 
congruent and incongruent conditions, with high similarity pairs elic
iting a smaller (less negative) N400 amplitude than low similarity pairs. 
In contrast, older adults exhibit a reduced N400 effect in incongruent 
conditions, suggesting an age-related attenuation in neural responsive
ness to semantic similarity when the pairs are incongruent. Conversely, 
in congruent conditions, the N400 amplitude in older adults shows a 
more pronounced distinction between high and low similarity pairs, 
with high similarity pairs eliciting a smaller N400 effect, similar to the 
pattern observed in younger adults.

Based on our second hypothesis for the LFE, that to-be-rejected (i.e. 
incongruent) features high in semantic similarity should engage 

monitoring processes more than those low in similarity especially for 
older adults, we ran another set of factorial ANOVA cluster analyses 
separately for the congruent and incongruent trials: Age Group (young, 
old) x 2 similarity (high, low) (see Fig. 6 for raster plots and ERPs). As for 
the N400 analyses, we included the 20 condition-significant electrodes 
from the omnibus mass univariate ANOVA, but for the LFE component, 
we selected a later time range (800–1500ms), consistent with the liter
ature (Brouwer and Crocker, 2017). There was a significant Age x 
Similarity effect (p = 0.0001) for congruent trials centered around 
electrode F8 and with a temporal peak of 1088ms. For incongruent 
trials, we also found a significant Age × Similarity interaction (p =
0.007), and the peak electrode with the most sustained interaction was 
F4. To compare the LFE effect across congruent and incongruent con
ditions, we ran a 2 Age (young, old) x 2 Congruence (congruent, 
incongruent) x 2 Channel (F8, F4) ANOVA on the similarity difference 
scores (high-low). We selected F8 and F4 because they were the peaks of 
significant sustained clusters in the congruent and incongruent trials. 
We found a main effect of Age (F (1,1384) = 22.61, p < 0.001; η2

p =

0.02), Congruence (F (1,1384) = 56.39, p < 0.001; η2
p = 0.04), and 

Channel (F (1,1384) = 81.16, p < 0.001; η2
p = 0.06). There was no 

interaction between Condition and Channel, or Condition, Age and 
Channel. The interaction between Congruence and Age was statistically 
significant (F (1, 1384) = 1060.88, p < 0.001; η2

p = 0.43). During 
incongruent trials, older adults exhibited a significant LFE difference (t 

Fig. 4. Omnibus mass univariate and spatial peak F3 ERPs for all conditions. (A) Results from mass univariate cluster analysis show bilateral clusters for a 2 
(age: young, old) x 4 (condition: congruent/high-similarity, congruent/low-similarity, incongruent/high-similarity, incongruent/low-similarity) factorial ANOVA. 
(B) ERPs for electrode F3, the spatial peak of age × condition interaction.
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(680) = 5.31, p < 0.001), while no significant difference was observed 
for younger adults (t (697) = − 1.01, p = 0.311). This indicates that the 
LFE is influenced by both the age of the participants and the congruence 
of the stimuli. For older adults, the LFE (sustained difference between 
high and low similarity) was larger during incongruent trials. In 
contrast, younger adults exhibited a more pronounced LFE during 
congruent trials, revealing an opposite pattern between the age groups.

4. Discussion

The accumulation of knowledge over a lifetime shapes how we store 
and access information, making it more complex and interconnected. 
This study illustrates how the increasing richness of semantic memory 
with age affects the way we retrieve and distinguish between concepts, 
especially when they are closely related. The denser organization of 
knowledge that comes with experience influences both the speed and 
nature of our cognitive processes. A distributional model of semantic 
memory allowed us to capture age differences in both behavioral and 
neural dynamics of semantic cognition in a semantic feature verification 
task. Our key behavioral finding is that older adults, more than young 
adults, take significantly longer to correctly reject a semantic feature as 
being incongruent when it is high vs. low in semantic similarity to the 
target. ERP results reveal that older adults have an attenuated neural 
response to semantically congruent features of a target word (N400) and 
show an extended search (LFE) that differentiates trials based on their 
distance in vector space i.e. semantic similarity.

As predicted, in both younger and older adults we found that 

semantic similarity between a target-feature pair facilitates semantic 
retrieval when it is a congruent feature but hurts it when it is an 
incongruent feature. This is especially true for older adults, who show a 
significant increase in response time for rejection of incongruent/high- 
similarity features. How might these behavioral findings relate to the
ories of semantic memory organization? Collins and Quillian (1969)
proposed the unsuccessful search hypothesis for false responses in sen
tence verification tasks. Inspired by Sternberg’s (1966) (Sternberg, 
1966) “self-terminating search” it suggests that false responses are the 
result of failed search in favor of a true response (Ergen et al., 2012). An 
extension of that theory, the search and destroy hypothesis, proposes 
that the connections between nodes are progressively checked before 
rejection. In this way, reaction times would increase when two concepts 
have more shared connections, or associated features. Our reaction time 
results contradict the unsuccessful search hypothesis because we did not 
observe longer verification times for false features independent of se
mantic similarity. But the search and destroy hypothesis is conceptually 
similar to our semantic space theory – we think that increased similarity, 
based on overlapping and shared features, results in a longer reaction 
time, especially when those overlapping features need to be rejected (i.e. 
incongruent trials). This is in line with the feature comparison model 
(Smith et al., 1974), in which reaction time for false statements is pre
dicted to increase as the overall similarity between two items increases. 
This slowing effect was more pronounced in older adults, consistent with 
the idea that as we accumulate knowledge, there are more features to 
compare. One alternative possibility is that older adults take longer to 
make a response because the concepts are not available to them, as has 

Fig. 5. Age attenuated N400 similarity effect for congruent (left column), but not incongruent (right column) target-feature pairs. (A) Mass univariate 
cluster analyses show significant age × similarity interaction in left frontal regions. (B) Group-averaged ERPs from electrodes F3 and C3 where the congruent and 
incongruent spatial peaks were observed. Highlighted area shows 350–550ms.
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been proposed in the working memory literature (Basak and Verhae
ghen, 2011). However, we found that older people were even more 
familiar with the word stimuli than were younger people. We take this as 
further evidence that older adults were searching through a densely 
populated semantic space - where increased relatedness between fea
tures selectively hinders performance for incongruent but 
high-similarity pairs.

For our N400 component of interest, we found an age-related 
attenuation of the similarity effect for congruent, compared to incon
gruent, target-feature pairs. Specifically, in younger adults to a greater 
extent than older adults, N400 magnitude was greater for low than high 
similarity target-feature pairs. This finding is consistent with a theory in 
which older adults’ denser semantic space increases the shared feature 
overlap between concepts. Therefore, the N400 could be invertedly 
indexing the number of representations that are activated during se
mantic search. In the younger adults, high-similarity features activate 
many nearby features, whereas low-similarity features activate fewer. 
However, for the older adults with a densely populated semantic space, 
both high and low target-feature pairs may activate many nearby fea
tures. It could be that feature activation in a semantic space acts much 
like semantic priming, where nearby features are activated proportional 
to their shared feature overlap. Semantic priming occurs when the 
processing of a word is influenced by the prior exposure to a related 

stimulus (Meisner, 2012). The N400 is attenuated with repeated priming 
of related word pairs (Taylor and Burke, 2002), and older adults 
demonstrate greater semantic priming than younger adults (Kiang et al., 
2013). Extending this idea, the attenuated N400 in older adults for 
congruent trials could represent the density of their feature space, where 
both high and low similarity features are primed in response to the 
target word.

Later in semantic retrieval, our study sheds light on the temporal 
dynamics of search, revealing a distinctive pattern in older adults 
characterized by a sustained search. This aligns with the notion that the 
accumulation of knowledge over time significantly influences the tra
jectory of semantic retrieval. For our LFE component, starting at 800ms 
and extending until participants make a congruence decision, we find an 
age-related similarity difference that is the opposite pattern in young 
and old. We expected both age groups to have a greater LFE for high 
similarity vs low similarity in both conditions because later frontal 
activation is thought to index successful recollection (Mecklinger et al., 
2007). As expected, we found that older adults show a greater LFE, for 
incongruent trials, indexing an extended search through semantic space. 
Our finding that younger adults show an LFE for congruent trials was 
unexpected. A speculative explanation is that in congruent trials there is 
less conflict because they don’t have to reject competitors. Therefore, 
the LFE could indicate an age-related difference in competition 

Fig. 6. LFE reflects sustained similarity-related activation in older adults. (B) Mass univariate cluster analyses show significant age × similarity interaction 
peaking at electrode F8 for congruent, and sustained activation in F4 for incongruent. (B) Group-averaged ERPs from electrodes F8 and F4 where similarity-related 
age effects were observed. Highlighted area shows neural dynamics of extended search from 800 to 1500 ms.
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resolution that is based on congruence and semantic similarity of 
target-feature pairs (Rose et al., 2019). We suggest that for older adults 
in particular, the LFE serves as an indicator of post-retrieval monitoring 
processes. Drawing parallels with findings by Hayama et al. (2008) in 
the context of episodic memory tasks, where frontal activity at 800ms 
was associated with evaluation and monitoring dependent on semantic 
information during retrieval, our study extends this understanding to 
the semantic feature domain. The LFE and sustained neural activity 
observed in older adults during semantic retrieval may signify an 
additional layer of evaluation required to navigate the densely popu
lated semantic space and search for concepts in close proximity.

The Inhibitory Deficit Hypothesis provides a framework for under
standing the potential mechanisms underlying semantic cognition in 
older adults. According to this hypothesis, aging is associated with a 
decline in the ability to inhibit irrelevant information in various 
cognitive domains, including memory retrieval (Hasher et al., 2007; 
Hasher and Zacks, 1988). In the current study, the inhibitory demand is 
greatest when participants must suppress highly related, but false/
incongruent features (i.e. pencil-has keys), the condition in which older 
adults were slowest. In a denser semantic space, such as that occurs in 
aging, there are more highly related features to inhibit. We propose that 
a denser semantic space is parsimonious with a theory of inhibition, 
where features are accumulated over experience and therefore add more 
competitors to the search process. The sustained LFE for older in
dividuals, reflecting a search process with more features to select from, 
is also consistent with the inhibition deficit hypothesis. That is, when 
semantic space is denser, inhibition demands are higher and older adults 
are slower to suppress the semantically related features. However, our 
supplementary analyses reveal that the impact of semantic similarity on 
reaction time was only significant in incongruent conditions, not 
congruent ones. This suggests that the inhibitory demands are indeed 
greater for older adults when dealing with semantically related but 
incorrect features. If inhibition were the primary factor, we might expect 
this effect across both congruent and incongruent conditions. However, 
our results indicate that this delay in older adults is specific to incon
gruent conditions, reinforcing the idea that accumulating semantic 
knowledge influences cognitive processes in aging by increasing the 
difficulty of suppressing incorrect but related features.

Potential limitations of our approach are the sole use of aging as an 
approximate model for semantic knowledge accumulation. Individual 
differences such as cultural influences (Goyal et al., 2020; Machery 
et al., 2004), exercise habits (Day and Loprinzi, 2019; Loprinzi and 
Edwards, 2018; Won et al., 2019), and genetic predispositions (Gong 
et al., 2012) have been found to affect semantic memory. Additionally, 
our reliance on a sample representing only two age groups constrains 
our ability to draw nuanced individual-level conclusions. A suggested 
avenue for future research involves adopting a lifespan approach, 
capturing participants across a broader age spectrum. This approach 
would enable us to explore the hypothesis that multiple episodic expo
sures to a concept or item contribute to the observed increase in se
mantic space density over time. While our study serves as a valuable 
proxy for understanding how increased semantic density might influ
ence cognitive processes, future research could enhance these insights 
by directly comparing vector space models of semantic representations 
in older versus younger adults. For instance, comparing pairwise 
concept ratings projected into a high-dimensional space could offer a 
more precise and nuanced understanding of how age-related changes in 
semantic memory organization impact retrieval dynamics.

In conclusion, our study addresses the conceptual landscape of se
mantic memory, specifically exploring the impact of aging on the den
sity of semantic space. We provide evidence that a greater accumulation 
of knowledge as we age influences semantic retrieval because the 
representational space itself is denser with more features.
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