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Using machine learning to simultaneously
quantify multiple cognitive components of
episodic memory

Soroush Mirjalili & Audrey Duarte

Why do we remember some events but forget others? Previous studies
attempting to decode successful vs. unsuccessful brain states to investigate
this question have met with limited success, potentially due, in part, to
assessing episodicmemory as a unidimensional process, despite evidence that
multiple domains contribute to episodic encoding. Using a machine learning
algorithm known as “transfer learning”, we leveraged visual perception, sus-
tained attention, and selective attention brain states to better predict episodic
memory performance from trial-to-trial encoding electroencephalography
(EEG) activity. We found that this multidimensional treatment of memory
decoding improved prediction performance compared to traditional, uni-
dimensional,methods, with each cognitive domain explaining unique variance
in decoding of successful encoding-related neural activity. Importantly, this
approach could be applied to cognitive domains outside of memory. Overall,
this study provides critical insight into the underlying reasons why some
events are remembered while others are not.

A major unanswered question in psychology is why do we remember
some events yet forget others? Understanding this question is
important not only for basic science but also for potential interven-
tions that might improve learning in real time in a variety of popula-
tions and real-world settings such as the workplace or classroom.
Recent advances in machine learning have made it possible for cog-
nitive neuroscientists to explore the “brain states” occurring during
learning thatpredict successful episodicmemory for individual events,
yet our ability to effectively predict memory performance from neural
activity remains weak1–4. Thus, the likelihood that a reliable and prac-
tical memory intervention system could soon be realized is low.

One of the potential reasons for our inability to reliably predict
memory performance from encoding-related brain activity is that
previous studies have investigated episodic memory as a unidimen-
sional process. Specifically, when training their memory decoders
using cross-validation, those studies only considered the outcome of
each event (i.e., whether it was later remembered or not) while over-
looking the underlying processes thatmay underly episodic encoding.
Critically, episodic memory is believed to be a multidimensional pro-
cess in which various cognitive functions including perception5,6,

sustained attention7,8, selective attention9,10, etc. contribute tomemory
formation. For example, neuroimaging evidence has shown some
common brain areas engaged bymultiple cognitive tasks, with activity
levels supporting performance in tasks assessing episodic memory
and other cognitive functions such as sustained attention and
perception6,7. Evidence showing that direct current stimulation of
brain areas in the selective attention network during episodicmemory
encoding10 and presenting to-be-encoded stimuli during high vs. low
sustained attention brain states8 enhance episodic memory perfor-
mance further support the multidimensionality of episodic memory.
However, despite episodic memory’s multidimensional nature, no
study has considered the simultaneous involvement of multiple cog-
nitive functions during episodic encoding to better understand the
underlying reasons why any specific event was not successfully enco-
ded. For example,was an event not encodedbecause the individual did
not sufficiently perceive it? Did they fail to maintain their attention to
successfully encode the event? Were they not selectively attending to
that event and effectively ignoring distracting information? Or was
encoding unsuccessful due to the failure to sufficiently engage multi-
ple of these processes?
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Importantly, memory task performance is the outcome of the
engagement of several cognitive processes but this binary outcome
(i.e., remembered/forgotten) does not allow us to disentangle the
contribution of these the associated underlying processes. As such, if
we could collect neural activity from external tasks that were each
associated with one of these underlying cognitive processes, we could
covertly monitor their contribution to encoding-related brain activity.
To elaborate with an example, one can record neural activity as par-
ticipants perform a perception task and train a high vs. low perception
performance classifier. This high vs. low performance classifier pro-
vides critical information regarding the features that best distinguish
high and low perception brain states. Using a machine learning algo-
rithm known as “transfer learning”11–16, one can then leverage the
information about low and high levels of perception and transfer the
gained knowledge to encoding-related brain activity to predict how
high or low the subject’s perceptionwas for each to-be-encoded event.
Using this approach to break down episodic memory into its sup-
porting cognitive components, we canbetter understand the extent to
which they are engaged during episodic encoding. Specifically, trans-
fer learning allows us to leverage information from external tasks (i.e.,
the “sources”) that each engages a specific cognitive function (e.g.,
perception, sustained attention, etc.) essential for memory encoding
(i.e., the “target”). Notably, only a handful of EEG studies have used
transfer learningwithmultiple sourceswith the sources typically being
EEG activity associated with the same cognitive task but fromdifferent
participants with the aim of designing a subject-independent classifier
that could potentially be useful for a brain-computer interface (BCI)
system15,17–20. However, the current study uses this multidimensional
approach to tease apart a cognitive process into its different cognitive
components within participants. Although there are several cognitive
functions linked to episodic encoding, considering all of them in this
studywasnotpractical due to the lengthof the experiment session.We
used visual perception, sustained attention, and selective attention as
the sources as they have been closely linked to episodic encoding5–10

and their associated tasks are simple while allowing us to perform a
high vs. low performance classifier. We hypothesize that this multi-
dimensional evaluation of episodic encoding will allow us to better
predict memory outcomes and more importantly, better understand
why some events are remembered and others are not.

In order to better define brain states associated with memory
success and failure, there are additional factors that need to be con-
sidered. Specifically, it may also be important to know how long a
participant has been encoding events (i.e., the “time-on-task” effect),
and whether the previously presented event was successfully encoded
(i.e., the encoding “history”). However, previous studies attempting to
distinguish successful from unsuccessful encoding overlooked these
trial-to-trial variation within trial types. Regarding the time-on-task
effect, it has been suggested that the neural resources for effective
encoding cannot be sustained indefinitely, with resources becoming
depleted (potentially due to fatigue) after a long period of continuous
encoding21–23. Intracranial EEG21 and fMRI22 evidence has shown that
higher time-on-task during episodic encoding is associated with
diminished activity in brain regions that support episodic encoding
success including the hippocampus, precuneus, and posterior cingu-
late. Similarly, other imaging studies have shown that with more time
spent performing perceptual learning, sequential learning, and object
naming tasks, activity in the associated brain regions is reduced24–26.
We hypothesize that the neural evidence for high levels of each source
will decrease as a function of the time that an individual has been
encoding events. Additionally, as events are embedded within a tem-
poral context that is sustained beyond a single episode27,28, and as
episodic encoding and retrieval processes evoke lingering states29,30,
brain states associated with a particular event will likely retain the
“history” of prior brain states. Using transfer learning, we can deter-
mine whether the extent to which one or more cognitive functions is

engaged reflects the history of the engagement of those functions for
recently encoded events, further elucidating what underlies successful
memory encoding. Specifically, we hypothesize that an event is more
likely to involve higher levels of the underlying cognitive processes
when it is preceded and followed by higher levels of engagement from
those processes.

In this study, we test the idea that by investigating the trial-to-trial
fluctuations in the levels of engagement of sustained attention,
selective attention, and visual perception processes during episodic
encoding, we can improve our ability to successfully predict, from
encoding-related brain activity, which events will be later remembered
vs. forgotten and the underlying reasons why. We recorded electro-
encephalography (EEG) while 43 young adults performed visual per-
ception, sustained attention, selective attention, and episodicmemory
tasks.We designed a high vs. low performance classifier for each of the
attention and perception tasks’ EEG data and used transfer learning to
leverage the information about the brain states associated with these
low and high levels to predict episodic memory performance from
trial-to-trial encoding EEG activity (Fig. 1)20,31,32.

Results
Investigating episodic memory as a multidimensional process
improved the memory prediction accuracy
Critically, we found that transfer learning significantly enhanced our
ability to predict episodic memory success across participants com-
pared to the traditional/unidimensional approach (from 72.0% to
81.4%) [tð42Þ= 11:046,p<0:001, one� tailed,d =0:81; Fig. 2]. Two
control analyses were performed to verify the validity of this multi-
dimensional approach. First, one could argue that the reason this
multidimensional transfer learning approach improved prediction
performance is simply due to adding any information from any
external source. Importantly, the transfer learning algorithm operates
under the assumption that the high levels of the sources map on the
high levels of the target (i.e., hits) and low levels of the sourcesmap on
the low levels of the target (i.e., misses) (Supplementary Fig. 8). If this
assumption was not correct, the transfer learning would perform just
as well if the source labels were randomly assigned, indicating the
irrelevance of the brain states associated with the sources when pre-
dicting encoding success (more detail in the Supplementary informa-
tion, “Control analyses for validating the transfer learning results”).
However, we found that the classification performance was sig-
nificantly worse than when the source labels were not shuffled
[tð42Þ=6:15,p<0:001, one� tailed, d =0:47; Fig. 2], suggesting high
levels of the sources do contribute to successful encoding encoding.
Interestingly, this approachperformedhigher than the unidimensional
approach [tð42Þ=3:80,p<0:001, one� tailed, d =0:31; Fig. 2]. One
explanation is that someof these randomassignments across the three
sources lead to correlated labels with the original version and some
sort of positive transferring will occur. Another possibility is that, in
terms of associated neural activity, high and low trials from a given
source are still quite similar to each other (i.e., fast and slow attention
trials) and adding the information from the three sources will still
benefit the encodingpredictioneven though the transfer is remarkably
less optimal.

Additionally, it is important to note that the training portion of the
encoding data is available for transfer learning to make necessary
adjustments when transferring a source to the target. To elaborate, EEG
data for each source task is associated with features that best distinguish
high and low levels of the associated cognitive function (e.g., selective
attention) on a subject-by-subject basis. However, the decision boundary
to determine high vs. low levels of each underlying cognitive function
during encoding needs to be adjusted according to range of feature
values for hits and misses (Supplementary Fig. 8; see Methods for more
detail). In this regard, we performed a second control analysis to inves-
tigate howmuchmemory classificationperformancewouldbe affected if

Article https://doi.org/10.1038/s41467-025-58265-9

Nature Communications |         (2025) 16:2856 2

www.nature.com/naturecommunications


there was no training data available from the encoding task and there-
fore, the sources were transferred to the encoding-related activity with-
out making any adjustments. We found that the memory prediction
performance significantly decreased compared to when the necessary
adjustments were made (i.e., the training portion of the encoding data
was available) during transfer learning [tð42Þ= 15:18,p<0:001,
one� tailed,d = 1:05] and compared to the unidimensional approach
[tð42Þ= 1:90,p=0:032, one� tailed, d =0:16] (Fig. 2). These findings
confirm the importance of using transfer learning to make necessary

adjustments (using the training portion of the encoding data) when
transferring a source to the target11–16.

Every cognitive function explained additional unique variance
of encoding-related activity
While these prior analyses showed that including all three sources sig-
nificantly improvedmemory prediction performance compared to only
using the training data from the memory task (i.e., unidimensional
approach), they did not show how much each source individually
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Fig. 1 | Generalprocedure.AWecollected EEGwhile theparticipants performedan
episodic memory task (the target, more detailed illustration in Supplementary
Fig. 4) aswell as visual perception, sustained attention, and selective attention tasks
(the sources). We used Illustrator to create the picture for the person wearing the
EEG headset. The island in the episodic memory task is taken from Creative Com-
mons. The image is available under the following Creative Commons license:
https://creativecommons.org/licenses/by/4.0/. B For each source task, using the
associated EEG for each participant, we trained a high vs. low performance classi-
fier. Each colored shape represents a trial for each separate task. C After finding
what features best distinguish high from low levels of performance for each source,

we used the Regularized Common Spatial Pattern (RCSP) algorithm to predict
whether perception, sustained attention, and selective attention are high or low
during encoding events. The circles represent encoding events. We predicted that
this multidimensional assessment of the underlying processes happening during
encoding would improve memory decoding performance relative to evaluating
episodic encoding as a unidimensional process (i.e., training the classifier with a
portion of the encoding data and testing it on the remaining portion of the
encoding data using cross-validation). The drawn decision boundaries and asso-
ciated performance levels are shown for demonstrative purposes, not reflective of
actual results.
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contributed to this improvement. Specifically, is one of visual percep-
tion, sustained attention, and selective attention more important than
the other two cognitive functions at different encoding periods for
successful memory formation? As seen in Supplementary Fig. 10C,
across all participants, there was no cognitive function at a particular
encoding period that was consistently more important than other
cognitive functions at other encoding periods (more detail in the Sup-
plementary information, “Importance of different cognitive functions
throughout the encoding period”). Therewas, however, a great amount
of subject-to-subject variation for the extent to which each source
contributed to encoding success at different encoding periods (Sup-
plementary Fig. 10A, 10B). In addition, do visual perception, sustained
attention, and selective attention explain unique variance of encoding-
related activity? And does adding the second and third source improve
memory prediction performance to the same extent that adding the
first source? To answer these questions, we determined how much
memory classification performance would improve by adding each
source in a stepwise fashion. We added the sources in all six possible
orders (e.g., 1st visual perception, 2nd sustained attention, 3rd selective
attention). The patterns of results were similar across these orderings
and thus, we report the average findings. Therewas a 4.9%performance
improvement after the first source was added, regardless of order.

There was a 2.7% performance improvement once the second source
was added, followed by a 1.8% performance improvement once the
third source was added (Fig. 3). Statistical comparisons confirmed that
adding each additional source significantly improved memory classifi-
cation performance ½all ts>5:968, allps<0:001, one� tailed,
allds>0:16�. Moreover, the extent to which classification performance
increased by adding a source decreased with each step [step 2
improvement compared to step 1: t 42ð Þ= 2:751,p=0:004, one�
tailed,d =0:63 and step 3 improvement compared to step
2: t 42ð Þ= 1:080,p=0:143, one� tailed,d =0:27].

Time-on-task significantly impacted the engagement of per-
ception, sustained attention, and selective attention during
encoding
We then investigated whether the level of engagement of perception,
sustained attention, and selective attention fluctuated depending on
how long the participant had been performing the encoding task. We
computed the slope of evidence values against the number of trials
encoded across subjects. Consistent with our hypothesis, we found
that as the time-on-task increased, the level of perception, sustained,
and selective attention significantly decreased for both hits andmisses
[allρs<� 0:592, allps<0:016; Fig. 4] and this decrease was similar for
hits and misses [�0:189<allρs<0:171, allps>0:484; Fig. 4]. Moreover,
even though memory performance decreased over time across sub-
jects, this effect was not significant [ρ =0:398,p=0:127].

We repeated the same analysis for each source to inspect whether
the time-on-task effect was driven by some domain-general processes
(see Supplementary Information for the results, “The time-on-task
effect for each source” and Supplementary Fig. 14). We found that the
level of sustained and selective attention significantly decreased as the
time-on-task for the corresponding tasks increased but no change was
found for the perception task. It is important to note that the per-
ception task took about 8minutes to complete, while the sustained
and selective attention tasks took about 15 and 20minutes respec-
tively. Whether there would be a negative time-on-task if the percep-
tion task hadbeen as long as the encoding and the other source tasks is
unclear. Overall, as mentioned in the introduction, the time-on-task
effect has been previously captured in various cognitive domains24–26

and one could speculate that it is tied to a domain-general process
(such as potentially mental fatigue) that is potentially shared between
all the current sources. This is not in contrary to the logic of transfer
learning as we, using the stepwise classification results, showed that
there are some domain-general processes that are shared across all
sources.

The engagement of perception, sustained attention, and selec-
tive attention during encoding depended on the encoding suc-
cess history
Next, we testedwhether an event ismore likely to involve higher levels
of the underlying cognitive processes when it is preceded by a history
of higher levels of engagement from those processes. As such, we
found that the neural evidence of high levels of perception, sustained
attention, and selective attentionwere higher for events preceded by a
hit compared to events preceded by a miss [F 1, 760ð Þ= 16:92,
p<0:001, η2

p =0:021; Fig. 5A].
While the previous encoding event’s encoding success could

influence the current encoding event’s underlying processes, by the
same logic, it can be inferred that the brain state associated with the
current event may also carry over into the next. Specifically, trials with
high levels of perception, sustained, and selective attention may be
more likely to precede high than low levels of these sources on sub-
sequent trials. Consistent with this hypothesis, we found that events
preceding a hit were more likely to engage higher levels of the
underlying cognitive processes relative to the events preceding a miss
[F 1, 760ð Þ=6:01,p=0:015, η2

p =0:008; Fig. 5B].
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Fig. 2 | Comparing the unidimensional and multidimensional classification
approaches. Comparisons of balanced accuracy for classifying encoding events
(based on item memory success) using only the memory training data (i.e., the
unidimensional approach) with transfer learning leveraging information from
external sources to make a prediction. The results of two control analyses are also
shown. The first control analysis tests the importance of using meaningful sources
predicted to support memory encoding (i.e., perception, sustained attention,
selective attention) to improve classification performance. We randomly assigned
high/low labels to the source trials and repeated the transfer learningprocess;more
detail in Supplementary Information). Classification performance was significantly
lower than when the source labels were not shuffled ½tð42Þ=6:15,p<0:001,
one� tailed, d =0:47�, suggesting the relevance of the selected sources to
encoding success. The second control analysis tests the importance of including
the training portion of thememory encoding EEG data to allow transfer learning to
make essential adjustments to effectively transfer each source to thememory data.
It shows not making any adjustments (because of not having any training portion
available from the memory data) can impair the transfer learning performance
[tð42Þ= 15:18,p<0:001, one� tailed,d = 1:05]. Circles reflect the data points of
individual participants (N = 43). In the box plots, the minima represent the lowest
data point within a condition, maxima represent the highest data point, centre
represent themedian value within the box, bounds of the box are the 25th and 75th
percentiles, whiskers extend from the box to the minimum and maximum values
that are not considered outliers, andpercentile refers to the position of a data point
within the distribution, with the box representing the middle 50% of data points
between the 25th and 75th percentiles. The asterisks reflect statistically significant
differences using one-tailed tests across conditions using Holm-Bonferroni cor-
rections for multiple comparisons (***p <0.001) and the associated Cohen’s d is
shown for each comparison. Source data are provided as a Source Data file.
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We repeated the same analysis for each source to inspect whether
the history effect reflects some domain-general processes (see Sup-
plementary Information for the results, “The history effect for each of
the three sources” and Supplementary Fig. 15). We found that only
during the sustained attention task, the associated brain state during
an event was related to the success/failure of the previous/subsequent
event. This indicates that the brain states for only certain tasks are
likely to last beyond a single event and this phenomenon is not related
to a domain-general process. One potential explanation is that the
history effect observed in episodic encoding is driven by sustained
attention processes. Given that sustained attention is necessary for
memory formation, the encoding-related brain states are likely to last
beyond a single event.

Discussion
In this study, we investigated the contribution of brain states asso-
ciated with several cognitive functions including visual perception,
sustained attention, and selective attention to encoding-related brain
states to better predict whether an event will be successfully encoded.
The findings of this study provide invaluable insight into the multi-
dimensional attributes of episodic memory that contribute to suc-
cessful vs. unsuccessful encoding.

We found that investigating memory as a multidimensional pro-
cess significantly increased our ability to predict memory outcomes as
opposed to the more traditional approach of investigating memory as
a unidimensional process. To understand why transfer learning is
improving the results, it is critical tomention that each selected source
task engages cognitive “subprocesses” that support episodic encod-
ing. For example, some aspects of color perception and categorization
(e.g., red vs. blue) likely underly performance in both the perception
task and the episodic memory task, especially given the relevance of
color in the to-be-encoded events. In this respect, transfer learning
capitalizes on these shared characteristics11–16 between the sources and
the encoding-related activity to improve prediction. Importantly, the

ability to transfer the features learned in a source task to the memory
task relies on the implicit assumption that there is an extent of context-
invariance in the measured cognitive processes. For example, to suc-
cessfully transfer the selective attention source to the memory data, it
is essential that the neural correlates of selective attention processes
are similar in the selective attention and memory tasks. However,
inevitably, there will be an extent of unaccounted context-variance
between each source task and the target task which could under-
estimate the extent the associated cognitive processes are engaged
during memory encoding.

A conceptual question about transfer learning is why using the
information from external tasks improves the prediction performance
beyond what is achievable from within-task training and testing. To
elaborate, to successfully transfer a source to thememory domain, the
informativepredictors from the source task are, themselves, present in
the memory task data, as discussed above. One might argue that, by
considering all the extracted features from the memory-task data, it
should be theoretically possible for a memory-task trained classifier to
learn from these informative features and have as high of a prediction
performance as the multidimensional classifier. However, it is critical
to note that thememory-task data on its own cannot provide howhigh
or low each of these underlying processes are within each encoding
event. To elaborate with an example, a hit trial could be “mixed” (i.e.,
some of the levels of perception, sustained attention, and selective
attention could be low at some periods) and no matter how many
features we extracted from the data, we would never be able to
know that using the unidimensional approach. Thus, making events
multidimensional using external sources allows us to predict howhigh
or low each of the underlying processes are during each encoding
event, helping us see the full picture and better predict encoding
success.

The stepwise classification results raised important points that
need to be further discussed. First, the reason memory classification
improved at every step is that the selected source tasks are not
redundant. This is not unexpected given that the source information is
derived from activity associated with different cognitive tasks with
different types of stimuli and task demands. Moreover, to empirically
verify that each source task engaged discriminable patterns of neural
activity, we performed a 3-class cognitive function classifier (i.e., per-
ception, sustained attention, or selective attention, see Supplementary
Information for more detail). The 3-class cognitive function classifier
performed with 94.4%, and range of 69.6% to 98.4%, accuracy on
average across participants, with empirical chance being 33.9%, after
conducting permutation tests. Collectively, we can infer that each
source task engages cognitive subprocesses that overlap with the
encoding subprocesses and explains unique variance in episodic
memory-related brain activity. Moreover, the diminishing return for
adding the subsequent sources suggests that these cognitive functions
are not completely independent from one another, with overlap in the
patterns of neural activity underlying high vs. low performance across
them. This is consistent with previous fMRI studies showing that sev-
eral brain regions are “domain-general” structures engaged during
performance of multiple types of tasks6,7,33,34. Similarly, previous EEG
studies show that the oscillations of certain frequency bands reflect
domain-general cognitive processes that are involved in several types
of tasks35,36. Thus, when the secondor the third sourcewere included in
the classification analysis, some of the characteristics they shared with
episodic memory encoding were already captured when the first
source was added, explaining the diminishing returns. Lastly, even
though there were remarkable subject-to-subject variation in the
results (as shown in Supplementary Fig. 10A, 10B), on average across all
subjects, the order in which each source was added made no sig-
nificant difference to the results. This suggests that each cognitive
domain was similarly important in predicting memory success across
but not within participants.

 lanretxe 2lanoisnemidinU
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3 external 
sources
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***, d = 0.17
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Fig. 3 | Comparing the classification performance depending on the number of
included sources.Here, we have shown the itemmemory classification performance
as a function of howmany of the sources are included (averaged across all six possible
orders) during classification. Specifically, adding each source significantly improved
the classification accuracy ½allts>5:968, allps<0:001, one� tailed, allds>0:16�. Circles
reflect the data points of individual participants (N=43). In the box plots, the minima
represent the lowest data point within a condition,maxima represent the highest data
point, centre represent the median value within the box, bounds of the box are the
25th and 75th percentiles, whiskers extend from the box to the minimum and max-
imumvalues that are not considered outliers, and percentile refers to the position of a
data point within the distribution, with the box representing the middle 50% of data
points between the 25th and 75th percentiles. The asterisks reflect statistically sig-
nificant differences using one-tailed tests across conditions using Holm-Bonferroni
corrections for multiple comparisons (***p<0.001) and the associated Cohen’s d is
shown for each comparison. Source data are provided as a Source Data file.
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We found that the extent to which these underlying cognitive
processes were engaged during episodicmemory encoding depended
on the number of events participants had already encoded (i.e., time-
on-task) as well as whether the prior event was successfully encoded
(i.e., the encoding history). Regarding the time-on-task effect, we
found the neural evidence for the underlying cognitive processes
significantly decreased and while the memory performance also
decreased over time, this decrease was not significant. Notably, pre-
vious neuroimaging studies of perceptual learning, sequential learn-
ing, and object naming have found that the activity in the
corresponding brain regions decreases over time without compro-
mising task performance, indicating improved efficiency24–26. How-
ever, other studies have shown that long periods of demanding
cognitive activity could induce mental fatigue and negatively impact
sustained attention37,38. While it is difficult to measure the extent to
which neural fatigue and efficiency are separately impacting memory
performance over time, it is plausible that both mechanisms are
potentially contributing to the observed neural and behavioral effects.

The history effect found in this study is consistent with the idea
that the brain states last beyond a single event and that the underlying
cognitive functions engaged during encoding of an event hold a his-
tory of the associated brain states of the previous encoding event27–30.
Our results are seemingly in contradiction to findings fromLohnas and
colleagues who used intracranial EEG to show that non-recalled events
with “good encoding history” (i.e., at least one of the two previous
words was recalled) had worse encoding states based on the hippo-
campus activity than non-recalled events with “poor encoding history”
(i.e., none of the two previous wordswere recalled) 21. These results are
consistent with the neural fatigue hypothesis21, which postulates that it
is more likely for encoding-related neural activity to decline than to
rise after a sustained period of good encoding. However, unrecalled
items were more common in this prior study than were misses in our
study and as such, the majority of the subsequent misses in our study
were preceded by “good encoding history” (based on their definition),
preventing us to exactly replicate their analyses. And while the hip-
pocampus activity was consistent with the neural fatigue hypothesis,
the dorsolateral prefrontal cortex (DLPFC) activity showed opposite
effects, consistent with the persistent encoding states. These differ-
ential effects on different brain regionsmakes it unclear how the scalp
EEG activity would depend on the previous event’s encoding success.
Overall, since we focused on the single prior event’s encoding success,
our results are more in line with the idea that mnemonic brain states
last beyond a single event. Having said that, the time-on-task effect

found on this study is consistent with the idea behind their study,
suggesting the encoding performance will decrease after a sustained
period of good encoding. Lastly, on a separate note, given that the
encodingdecisions are likely/unlikely contextdecisions andduring the
retrieval phase, an itemmemory decision was followed by two context
memory decisions before the next event’s item memory decision,
response priming cannot account for this result.

Crucially, the idea of teasing apart a cognitive process into its
cognitive components is not restricted to the episodic memory
domain and the approach of this study also offers avenues for neu-
roscientists that are interested in other cognitive domains. In fact, one
could potentially break down any cognitive function into its under-
lying cognitive processes to better understand that cognitive function.
As an example, to better understand the underlying neural activity
during threat detection (i.e., the target), using a similar approach to
this study, one could investigate the involvement of processes related
to visual perception, arousal, emotion, autobiographical memory,
visual imagery, etc. (i.e., the sources). To support this idea, using our
current dataset, we used selective attention as the target domain and
investigated the contribution of visual perception, sustained attention,
and episodic encoding processes during selective attention-related
activity (Supplementary Fig. 13; see Supplementary Information for the
results). Importantly, episodic memory did not explain unique var-
iance above and beyond that explained by sustained attention and
perception, suggesting that selective attention underlies episodic
encoding more than episodic encoding underlies selective attention.
Moreover, even though for episodic encoding, the selected sources
contributed equally to encoding-related activity, this finding suggests
that different sources could contribute differently to the target
depending on the selected sources and the target.

The findings of this study should be interpreted in the context of
a few limitations. First, it is unlikely that the three source tasks (or any
other task) are completely “process-pure” and there are likely mul-
tiple cognitive processes that differentiate high and low trials in each
of the tasks. For instance, earlier, wementioned color perception and
categorization as some of those potential subprocesses but there are
likely additional subprocesses involved during some/all of the used
tasks. Thus, pinpointing what exact subprocess for a given source
task is producing the positive transfer effect (for each encoding
event and for each participant) is beyond the scope of this study. In
addition, other cognitive functions besides those investigated here,
including executive function, working memory, emotion, etc., likely
contribute to episodic encoding. Future studies could design other

Fig. 4 | The time-on-task effect for the engagement of perception, sustained
attention, and selective attention processes during encoding. The encoding
events consisted of 240 stimuli presented during 4 blocks and 16 mini-blocks. The
neural evidence of high levels of each source for hits and misses within each mini-

block was averaged for each participant. The average of these evidence scores for
each source across all participants is shown separately for hits and misses. The
associated lines of best fit are shown as well. Source data are provided as a Source
Data file.
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source tasks to investigate their involvement during episodic
encoding. Although our control analyses support our assertion that
the source processes (perception, selective, and sustained attention)
were relevant to episodic encoding, in a future study, another good
control would be to assess the contribution of neural activity from a
task-irrelevant “sham” task (e.g. auditory perception). Furthermore,
using functional magnetic resonance imaging (fMRI) could better
elucidate the brain networks and areas that are involved when
assessing the engagement of different cognitive functions during
encoding. However, assessing the spatial information regarding the
selected features was still informative (see Supplementary informa-
tion “Importance of different brain areas in the classification
results”). The last limitation that is worth mentioning is related to all
studies that attempt to predict encoding success, and this study is no
exception. Specifically, it is not definitive that a subsequently for-
gotten event was not actually encoded. It could be the case that an
event was weakly encoded and unsuccessfully consolidated. In
addition, participants might make response errors during retrieval
(i.e., responding “new” when they intended “old”), This means some
“misses” might actually be associated with successful encoding,
which could reduce the classification accuracy. Altogether, it is
important to acknowledge these limitations and note that for any
memory prediction study, including this one, these factors could
have a remarkable negative impact on the classifier’s performance.

Critically, not only does this study shed light on the multi-
dimensionality of memory, which is important for basic science, but it
also opens avenues for future implications in terms of real-world
interventions to improve memory. This multidimensional evaluation
approach substantially improved prediction accuracy but more
importantly, perhaps, it offers potential to personalize future feedback
systems that could be implemented for real-world intervention appli-
cations.To elaborate, thismultidimensional perspective couldallowus
to understand why a specific event is potentially not successfully
encoded and provide the intervention accordingly. For instance, if the

intervention system detects memory failure mainly because of low
sustained attention, suitable feedback potentially could be to take a
break. Alternatively, if unsuccessful encoding is because of low selec-
tive attention, effective feedback could be to introduce salient cues to
enhance attention. The findings related to the time-on-task and history
effect could be important formemory intervention systems aswell. To
elaborate, as an individual encodesmoreevents, anddepending on the
previous event’s memory success, a multidimensional intervention
system could adapt and adjust its prediction criterion to consider the
encoding history and person’s potentially increased efficiency. Thus,
the ability to better predictmemory success and provide personalized
interventions and adapt the memory predictor system based on the
time-on-task and history advances the field of cognitive neuroscience
closer to the goal of designing an effective, real-time, memory-
improvement system.

Methods
Participants
The participants consisted of 47, right-handed adults (22 men, 24
women, 1 non-binary) fromages 18 to 35.We excluded 4participants: 3
of them were outliers (more than 3 standard deviations below the
mean) in terms of performance in at least 2 of the tasks and the other
person had post-traumatic stress disorder (PTSD) even though we had
not realized that during initial screening. All participants were fluent in
English and had normal or corrected vision. Subjects were compen-
sated with $20/h and were recruited from the University of Texas at
Austin and surrounding community. Except for the participant diag-
nosed with PTSD, none of the other participants reported any psy-
chiatric or neurological disorders, vascular disease, or use of any type
of medication that affects the central nervous system. All participants
signed consent forms, and the entire study was approved by the Uni-
versity of Texas at Austin Institutional Review Board. Moreover, all
participants completed 4 questionnaires including The Attention-
Related Cognitive Errors Scale (ARCES)39, Sleep Quality Assessment

Fig. 5 | Impact of encoding history on an event’s underlying cognitive pro-
cesses. The level of engagement of the underlying cognitive processes during
different encoding periods for events: (A) following a hit vs. following a miss and
(B) preceding a hit vs. preceding a miss. The events are collapsed and averaged
across hits and misses. The average level of engagement of each underlying cog-
nitive process across all participants during early, middle, and late encoding peri-
ods is shown. We conducted Memory condition × Source × Time ANOVA for the
associated analyses (see Methods for more details). The main effect of Memory
Condition was significant for the effect of the prior event

[F 1, 760ð Þ= 16:92,p<0:001, η2
p =0:021] and the effect of the subsequent event

½F 1, 760ð Þ=6:01,p =0:015, η2
p =0:008� on the current event. It is worthmentioning

that in both sets of ANOVA analyses, there was no Time × Source × Memory
Condition interaction effect ½allFs<1:75, allps>0:176, allη2

ps<0:005� and the inter-
pretation regarding the main effect of Memory Condition was one-sided. The
associated error bars for each condition reflect standard error of the mean
obtained across all participants (N = 43). Source data are provided as a Source
Data file.
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(PSQI)40, Center for Epidemiologic Studies Depression Scale Revised
(CESD-R-20)41, and Epworth Sleepiness Scale42.

Experimental tasks
It is important to mention that all the tasks were completed in a single
session in one day. The episodic memory task (both encoding and
retrieval stages) was always performed first followed by the three
source tasks. The order of the three source tasks was counterbalanced
across participants. It took roughly 45minutes to perform thememory
task, 8minutes to perform the perception task, 20minutes to perform
the sustained attention task, and 15minutes to perform the selective
attention task.

Visual perception task
In this experiment, we examined the level of perceptual processing
using a task used often in the literature that also minimizes the influ-
ence of other cognitive processes43–45. Supplementary Fig. 1 shows the
procedure. The task included 4 blocks where each block had 72 trials.
For each trial, a black fixation cross was presented in themiddle of the
screen for 500ms before the stimulus was shown for 500ms. Each
stimulus was a 7 × 7 grid of blue and red circles. For each grid, there
were 27 circles with the dominant color and 22 circles with the other
color. Half of the grids had more blue circles and the other half of the
grids had more red circles. The order of shown grids was random for
eachparticipant. The subjecthad todecidewhether there aremore red
or more blue circles in each grid by pressing 1 or 2 on the keyboard.
Each stimulus was presented for 500ms and the subject had 2 seconds
to make a decision. There were 10 practice trials at the beginning and
participants were instructed to keep their eyes in the middle of the
screen for the whole duration of each trial. Within each individual,
correct responses corresponded to the higher level of perception
while incorrect responses corresponded to the lower level of percep-
tion. To perform binary classification and separate high vs. low levels
of perception, we classified correct and incorrect responses.

Sustained attention task
In this experiment, we examined the sustained attention level while
minimizing the influence of activities related to other cognitive
domains using Conjunctive Continuous Performance Test-Visual
(CCPT-V)46. Supplementary Fig. 2 shows the procedure. The task
included 4 blocks where each block had 200 trials. For each trial, the
stimulus was a colored geometric shape shown at the center of the
screen. The task included 16 different stimuli generated from all
combinations of four colors (green, yellow, red, or blue) and four
shapes (triangle, circle, square, or star). The target (red square)
appeared on 30% of the trials (i.e., 240 trials). A red non-square
appeared on 17.5% of the trials, a non-red square appeared on 17.5% of
the trials, and for the remaining 35% of the trials a shape that was
neither red nor squared appeared. Each stimulus was presented for
100ms and was separated from the next stimulus by an interstimulus
intervals (ISI) of 1000, 1250, or 1500ms. Each ISI appeared in 1/3rd of
the trials. The stimuli and ISIs were selected randomly. There were 10
practice trials at the beginning and participants were instructed to
press the space bar to respond, as soon as the target appeared and to
withhold from responding to all other stimuli. Within each individual,
faster response times for correct responses correspond to the higher
level of sustained attention. To perform binary classification and
separate high vs. low levels of sustained attention, we only used cor-
rect target trials with the fastest 40% corresponding to “high” and the
slowest 40% to “low” sustained attention. The top 40% and bottom
40% cutoff ensured that we are including as many trials as possible
while having a clear boundary between “high” and “low” trials. We did
not classify correct vs. incorrect decisions since the performance was
on the ceiling level.

Selective attention task
In this experiment, we examined the selective attention level while
minimizing the influence of other cognitive-related activities. Supple-
mentary Fig. 3 shows the procedure. This task is known as a Spatial
Cued-Identification Task (SCIT) which is a spatial cued task with exo-
genous cues46. To elaborate, the fixation display included a black cross
in the middle of the screen and two black rectangles to the right and
left of fixation. The cueing display was similar to the fixation display
but one of the rectangles would brighten briefly. The target display
consisted of a black circle placed on the fixation display and centered
in one of the two rectangles. On each trial, the fixation display
appeared for 1000ms, then the cueing displaywere shown for 200ms.
After a 100ms ISI, the target was presented for 100ms. 75% of trials
were valid (i.e., the target appeared where the rectangle had brigh-
tened earlier) and 25% were invalid (i.e., the target appeared where the
other rectangle was), randomly intermixed within a block. The task
consisted of 4 blocks of 100 trials each. There were 10 practice trials at
the beginning and participants were instructed to select the rectangle
that contained the target as soon as possible while keeping their eyes
on the fixation cross for the whole duration of each trial. Within each
individual, faster response times for correct responses correspond to
the higher level of selective attention. To perform binary classification
and separate high vs. low levels of selective attention, we only included
the trials that were correctly identified in the valid condition with the
fastest 40% corresponding tohigh and the slowest 40% to low selective
attention. The top 40% and bottom 40% cutoff ensured that we are
including as many trials as possible while having a clear boundary
between “high” and “low” trials. We did not classify correct vs. incor-
rect decisions since the performance was on the ceiling level. This is
because the valid and invalid conditions require different cognitive
operations and including the trials from both conditions would
negatively impact the classification procedure.

Episodic memory task
The episodic memory (i.e., target) task was designed to be complex,
much like those in real life, and include multiple cognitive facets
including visual perception, sustained attention, and selective
attention4,47,48. 360 images of objects were chosen from the Bank of
Standardized Stimuli (BOSS) datasets49,50 and we turned them into
grayscale. Each grayscale object was presented in the middle of the
screenwith gray background. Scenes and color squares were shown to
either side of the object. The locations of the context features (i.e.,
color or scene) were counter-balanced across blocks so that they were
presented anequal number of times on either side across subjects. The
scenes consisted of color photos of a studio apartment, cityscape, or
island. The colored squares were red, green, or brown. Each context
and object pictures spanned amaximum horizontal and vertical visual
angle of around 3°. 240 of the objects were shown during encoding
while during retrieval, 120 new objects were presented in addition to
the 240 previously presented objects. Study and test objects were
counterbalanced across participants.

Supplementary Fig. 4 shows the procedure used at the study and
test stages. Before each stage, participants were provided instructions
and given 10 trials to practice. For each encoding trial, participants
were instructed to attended to either the colored square or the scene,
which served as the attended context for that trial. Participants were
asked to make a subjective yes/no judgement about the relationship
between the object and one of the colored square (i.e., is the color
likely for this object?) or the scene (i.e., is this object likely to appear in
the scene?). The studyphaseconsistedof four blockswhereeachblock
included four mini-blocks, each of which consisted of 15 trials. Before
beginning of eachmini-block, a prompt was shown (e.g., “Now youwill
assesswhether the color is likely for the object” or “Nowyouwill assess
whether the scene is likely for the object”). Furthermore, each trial had
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a reminder prompt presented below the pictures during study trials
(see Supplementary Fig. 4).

In the test stage, both old and new objects were shown. Similar to
the study phase, each object was presented with a colored square as
well as a scene. For each object, the participant initially had to decide
whether it was old or new. If the participant decided the object was
new, the next trial began after 2000ms. If they decided it was old, they
had to make two additional assessments about whether each of the
color and the scene matched or did not match the ones initially pre-
sented with the same object during the study phase. The order of the
second and third questions was counterbalanced across participants.
For oldobjects, thepairingwas set in away that an equal number of old
objects were shown with: (1) both color and scene matching those
presented at the study stage, (2) only the color matching, (3) only the
scene matching, and (4) neither color nor scene matching. In total,
there were four study and four test blocks. To perform binary classi-
fication, we separated subsequently remembered items (i.e., “item
hits”) from subsequently forgotten items (i.e., “item misses”). Fur-
thermore, to perform binary classification and separate high vs. low
levels of attended context memory encoding, we separated correct
context decisions (i.e., the context was correctly identified as a match
or a mismatch later at retrieval) from incorrect context decisions (i.e.,
the context was incorrectly identified as amatch or amismatch later at
retrieval).

Notably, all the analyses were performed for classifying brain
states associated with item memory (i.e., item hits vs. item misses) as
well as attended context memory (i.e., correct vs. incorrect context
decisions). Importantly, item and context encoding processes are
correlated andwe did notmake any specific prediction about item and
context encoding being different for any of our hypotheses in this
study. Thus, we focused on the results obtained from item memory
classification analyses. Regardless, the findings of the analyses related
to attended context memory classification were very similar to the
ones related to item memory classification (see Supplementary Infor-
mation section “The classification results to predict attended context
memory success” and Supplementary Fig. 12 for the results).

EEG recording
Continuous scalp-recorded EEG data was collected from 31 electrodes
using the Brain Vision ActiCAP system. Electrode position reflected the
extended 10–20 system51. Electrode positions consisted of: Fp1, Fz, F3,
F7, FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8,
TP10, CP6, CP2, C4, T8, FT10, FC6, FC2, F4, F8, and Fp2. External right
and left mastoid electrodes were used for offline referencing. Two
additional electrodes recorded horizontal electrooculogram (HEOG)
at the lateral canthi of the right and left eyes and two electrodes placed
inferior and superior to the right eye recorded vertical electro-
oculogram (VEOG). The sampling rate of EEG was 500Hz without high
or low pass filtering.

EEG preprocessing
Offline analysis of the EEG data was performed in MATLAB using the
EEGLAB52, ERPLAB53, and FIELDTRIP54 toolboxes. For the episodic
memory data, each epoch was baseline corrected according to 600 to
400ms before the stimulus onset while for the source tasks, each
epoch was baseline corrected according to 400 to 200ms before the
stimulus onset. We used an earlier baseline for the episodic memory
data to be able to potentially investigate the pre-stimulus periods for
the encoding task, not presented here. The sampling rate was reduced
from 500Hz to 250Hz and bandpass filtering was applied to the data
to include 0.05 to 80Hz frequencies.We first used visual inspection to
removed trials that hadmuscle artifacts, electrode artifacts, and sweat
artifacts. Subsequently, we ran an independent component analysis
(ICA) on all head electrodes to identify ocular artifacts (i.e., blinks and
horizontal eye movements). Components associated with eye

movements were removed by visually inspecting the topographic
componentmaps aswell as the component timecourse. If the data had
a noisy electrode (e.g., more than 40% of the epochs had to be
removed), it would be removed and interpolated using the surround-
ing electrodes to estimate the noisy electrode’s activity. Next, we
automatically removed the epochs that were showing extreme vol-
tages (higher than 150 microvolt) for at least 2 electrodes and used
visual inspection to remove the epochs that still contained any type of
artifact. Lastly, we ran the time frequency procedure by using Morlet
wavelets at 5 cycles with 78 linearly spaced frequencies from 3 to
80Hz. Each epoch was then down sampled to 50Hz52.

Transferring the information from a source to the target
Using the EEG recordings from the sources, we trained binary high vs.
low classifiers specific to those cognitive functions. During each time
window of interest (more detail in the last paragraph of this section),
we used the voltage (with sampling rate of 250Hz, or 4-ms for each
time bin) and the power of different frequency bands including theta
(6–8Hz), alpha (8–12 Hz), beta (13–30Hz), and gamma (35–80Hz)
using time-frequency representation (with sampling rate of 50Hz, or
20-ms for each time bin). We used both voltage and power as
extracting as much information as possible from the neural activity
allows us to have a stronger prediction power (see the Supplemen-
tary information, “Importance of different frequency bands and
voltage in the classification results” for more details). We log-
transformed the power of each frequency to ensure the scale of the
power values of different frequencies are at similar ranges. We
extracted features based on common spatial patterns (CSP) as it has
been commonly and effectively used in the transfer learning
literature17,18,20,31,32,55,56 (see below for description of CSP). For the time
window of interest for classification, we extracted CSP-based fea-
tures for the time series of voltage as well as the power of theta,
alpha, beta, and gamma frequency bands, leading to 150 CSP-based
features (more details in the next paragraphs). For feature selection
and training the classifier, we used the recommendations mentioned
in4. Specifically, it has been shown that feature selection using the
Sequential Forward Selection approach (also known as the “wrapper”
method) is optimal in terms of the associated classification perfor-
mance. However, given that this approach performs classification
(using numerous different sets of features) as part of the feature
selection, it is quite time-consuming, and it is not practical to search
through all 150 features to find the best set of features. Thus, we first
“filter” a certain number of features and then use the wrapper
method to find the best set of features. We evaluated howmuch each
extracted feature (i.e., CSP-based feature extracted from the voltage
or power data) can be useful for binary classification by calculating
the associated Fisher score. As recommended in4, the number of
features to filter and the number of features to select among them
using the wrapper method are the two parameters that should be
chosen based on the researcher’s preference for performance and
running time. In this study, we found that filtering the top 40 features
and selecting the best 5 features among them with the wrapper
method ensured the optimal classification performance with rea-
sonable running time (Supplementary Fig. 5). Moreover, given that
the performances across different classifiers are fairly similar, and
given that this study’s analyses are computationally time-consuming,
we used naïve Bayes to train the classifier due to its fast
performance4.

Importantly, we selected the top 5 features (among the 150
extracted features) to ensure the classification performance would be
high without sacrificing the running time. However, with the current
feature selectionmethodology, it is possible that themultidimensional
approach increases the performance because potentially predictive
features from thememory task were excluded during feature selection
and thus the current unidimensional performance is an underestimate
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of what is achievable. To rule out this possibility, for 10 randomly
selected participants, we increased the number of selected features
(spanning from 5 up to the full 150) to inspect how much the classifi-
cation performance for both approaches would change (Supplemen-
tary Fig. 6). We found that the classification performance increased for
both approaches as the number of selected features increased up until
the classifier started to suffer from overfitting. Critically, even at the
peak performance (i.e., around 50 selected features), the unidimen-
sional classification did not perform as well as the multidimensional
approach with only 5 selected features, suggesting the advantage of
themultidimensional approach is not simply due to the current feature
selection approach (more details in the discussion).

For all the classification analyses in this study, we used the syn-
thetic minority oversampling technique or “SMOTE” to ensure there
would be equal numbers of trials for both conditions and the classifier
would not have a bias to label trials as the class with themajority of the
trials4. Moreover, to reduce over-fitting, we used 5-fold nested cross-
validation to train and test the classifier. In more detail, at each outer
fold, 1/5thof the trialswouldbe totally left out and theywouldnever be
used during training for that outer fold. The classifier’s parameters
(i.e., the top 5 features and transfer learning parameters;more detail in
Supplementary Fig. 7A) would then be optimized by running 5-fold
cross-validation on the remaining 4/5th of the trials. Once the classifier
was optimized (i.e., the best set of features were obtained), we would
test the classifier’s performance on the 1/5th of the trials that were
totally left out for the entire training process of that outer fold. We
repeated the same process 5 times (i.e., leaving out 1/5th of the trials
each time) so that every trial was left out once and we could measure
the classifier’s performance on the left-out trials without any inflam-
mation. Moreover, we used balanced accuracy to evaluate the classi-
fication performance. Balanced accuracy is the average between
sensitivity (i.e., true positive rate) and specificity (i.e., true negative
rate) and it considers the imbalance between the number of trials in
different conditions4. Since in this study, we used SMOTE to balance
the number of trials for hits and misses, the balanced accuracy would
theoretically be the same as typical accuracy (i.e., the ratio of correct
predictions across both conditions).

To transfer a sourcedomain to the target domain, one could train a
classifier to separate the high and low levels of the source and test the
sameclassifier on the target data. However, it deservesmention that the
target and source usually represent data from different participants,
different recording sessions, or like this study, different tasks. Thus, if
for the target, one extracts the same effective features that separated
high and low levels of the source and uses the same trained classifier,
with no adjustment, to make a prediction for the target events, the
classifier’s output is usually not reliable. To illustrate with a simple
hypothetical example, and this is not reflective of how the proposed
algorithm exactly works, imagine trying to determine whether the level
of perception is high during an encoding event. Using the perception
data, we realize that higher posterior theta activity is associated with
higher perception. In that case, if the posterior theta power was higher
than 40 μv2

Hz , the trial is associated with high perception. Hypothetically
speaking, itmight be the case that the posterior theta power is always in
the range of 10 to 30 μv2

Hz during the encoding experiment. In that case, if
we test the same classifier on the encoding data, it will predict that the
perceptionwas low during all events. As a result, it is important tomake
an adjustment to the decision boundary tomake an accurate prediction
about the perception level during encoding. For example, after using
transfer learning and considering posterior theta activity during suc-
cessful and unsuccessful encoding, we might realize that high percep-
tual activity during encoding is associated with posterior theta activity
that exceeds 15 μv2

Hz rather than 40 μv2

Hz . Thus, to effectively leverage the
information from a source to the target, it is critical to use transfer
learning algorithm (Supplementary Fig. 8).

There have been several approaches used in the literature for
transfer learning, but one of themost common approaches is based on
common spatial patterns (CSP)17,18,20,31,32,55,56. While there is no general
agreement about the specific optimal CSP-based approach, we used
themethodologyused in20which is knownasRegularizedCSPorRCSP.
We used this method because of its effective performance and sim-
plicity to implement and interpret. Briefly, the typical CSP algorithm
designs spatial filters that maximize the variance difference between
the trials of the two distinct classes. The spatial filters are obtained by
using the concept of eigen value decomposition after solving the fol-
lowing optimization problem:

w= argmax
wTC 1f gw

wTC 2f gw
ð1Þ

For example, for a 200-ms timewindowof interest for trial X , we’ll
have a time series of 50voltage (in 4-ms timebins) and 10power (in 20-
ms time bins) values at different frequency bands. Thus, trial X is
represented by a 31-by-10 (for the theta, alpha, beta, and gamma fre-
quency bands) or a 31-by-50 (for voltage) matrix. The associated 31-by-
31 covariance matrix C will be computed as:

C =
XXT

trace XXT
� � ð2Þ

C 1f g and C 2f g represent the average covariance matrices of the trials of
each two class.Moreover, given that our EEGdataset has 31 electrodes,

w=

w1�1 � � � w1�31

..

. . .
. ..

.

w31�1 � � � w31�31

2
64

3
75 represents a 31-by-31 matrix where the 31

rows of w represent 31 spatial filters that are designed to optimally
project the data into a new space in which the data at every projected
electrode is a linear combination of the data across all original
electrodes. Specifically, for the first row of w (i.e.,
w1 = ½w1�1, w1�2, . . . ,w1�31�), the variance of the time series (either
voltage or power) of the associated projected electrode aremaximally
high for trials of class 1 and minimally low for trials of class 2 (see
Supplementary Information “Importance of different brain areas in the
classification results” and Supplementary Fig. 9). For the next rows of
w, the variance of the projected electrodes keeps decreasing for trials
of class 1 while increasing for trials of class 2. Thus, for the last rowofw
(i.e.,w31 = ½w31�1, w31�2, . . . , w31�31�), the variance of the time series of
the associatedprojected electrode areminimally low for trials of class 1
andmaximally high for trials of class 2. In this study, we combined two
regularization approaches of the CSP filters to perform the transfer
learning. Specifically, separately for each source task, 31-by-31matrices
�Cs
f1g and

�Cs
f2g are obtained from that individual source task while 31-by-

31 matrices �Ct
f1g and

�Ct
f2g are obtained from the target task. Next, the

two following optimization problems should be solved:

w= argmax
wTCreg

1f g w

wTCreg
2f g w+βwTD1w

ð3Þ

w= argmax
wTCreg

1f g w

wTCreg
2f g w+βwTD31w

ð4Þ

should be solved. In this equation:

Creg
if g =α:Cs

if g + 1� αð Þ:Ct
if g, i= 1, 2 ð5Þ
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1
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.
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3
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D31 =

1
w31�1

2 � � � 0

..

. . .
. ..

.

0 � � � 1
w31�31

2

2
6664

3
7775 ð7Þ

D1 and D31 are each a 31-by-31 diagonal matrix with the diagonal
elements being the inverse squared values of the first and last spatial
filters (w1 andw31) respectively.w1 andw31 are selected as they are the
two spatial filters that best discriminate the variance between the trials
of the two classes. In the optimization equation, α and β are scalar
regularization parameters that need tobe chosen appropriatelyduring
cross-validation, with α denoting how much each of the source and
target tasks will drive the regularized spatial filters and β reducing the
impact of inappropriate channels for the target domain. The transfer
learning process was performed for the voltage as well as the power
values of theta, alpha, beta, and gamma frequency bands. And sepa-
rately for each 4 frequency bands and the voltage, the output (i.e., the
variance from the projected time series) from the first 15 rows (where
the variance of class 1 trials are higher than class 2 trials) and the last 15
rows (where the variance of class 1 trials arehigher than class 2 trials) of
the associated w matrices were used, leading to 30× 5= 150 features.
Note that α =0 and β=0 would result in the typical CSP approach for
the single-task classification of the target taskwhich totally ignores the
information from the source. Thus, this optimization problem tries to
improve the performance by utilizing the gained information from the
source domain to add to what could already be obtained by only
focusing on the target task. It is critical to note that the sameprinciples
would apply to transfer the information from one participant to
another. In that case, the source would be the information from the
“source subject” and the target would be the information (from the
same or even a different task) from the “target subject”. Since we did
not have any specific hypothesis regarding between-subject classifi-
cation, we did not perform any cross-subject classification analysis.

To take advantage of EEG’s high temporal resolution, we investi-
gated how high perception, sustained, and selective attention are at
different encoding periods during an event. To elaborate, we first
found the optimal 200ms time window that could optimally classify
high and low states associated with each source across participants.
We then transferred the information from each source to different
200ms periods of each encoding event. In more details, we first
transferred the information from each source to the [0 200ms] period
during each encoding event.We then transferred the information from
each source to the [100 300ms] period during each encoding event.
We kept on transferring the information from each source to the dif-
ferent periods of eachencoding event (with the last periodbeing [1300
1500ms] during an encoding event). Thus, during each encoding
event, we assessed the level of perception, sustained attention, and
selective attention during 14 different 200ms time windows including
[0 200ms], [100 300ms], [200 400ms], …, [1300 1500ms]. An illus-
tration of this approach is shown in Supplementary Fig. 7B. It is worth
mentioning that the transfer learning algorithm requires the source
and target to have the same length of data (in terms of the number of
time points) to be able to transfer the source information to the target
data. This is because the same set of CSP-based features (extracted
froma 200msperiod during a source task) needs to be extracted from
the target data and thismeans for each transfer learning procedure, we
selected a 200ms period during encoding. Having said that, if one

wants to transfer a longer period of source to a shorter period of the
target, they can use moving averaging of the data to reduce the
number of time samples of the source and then perform the transfer
learning analyses.

Integrating the information from all sources
After using transfer learning to obtain the levels of perception, sus-
tained attention, and selective attention at 14 different time intervals
during encoding for each event, it is essential to integrate these pieces
of information to determine their collective ability to predict memory
success or failure. While there have been some EEG transfer learning
studies using multiple source domains for fatigue assessment, emo-
tion recognition, and motor imagery15,17–20, this is a relatively new field
especially in the neuroimaging field and cognitive neuroscience area.
Since there are only a few EEG studies on this topic with them being
published in 2020 or later, there is little consensus on the optimal
approach for integration of the information fromdifferent sources.We
used the approach from a prior EEG study due to its effective perfor-
mance as well as its simplicity to implement19. In more detail, each
source classifier (i.e., for determining the level of perception, sustained
attention, or selective attention) produced a score at 14 different time
windows during each encoding event showing how the level of that
associated source was during that period of encoding. These scores
include scoreper½0�200�, scoreper½100�300�, scoreper½200�400�, …,
scoreper½1300�1500�, for perception level at different encoding periods,
scoresus½0�200�, scoresus½100�300�, scoresus½200�400�, …, scoresus½1300�1500�,
for sustained attention level at different encoding periods, and
scoresel½0�200�, scoresel½100�300�, scoresel½200�400�, …, scoresel½1300�1500�,
for selective attention level at different encoding periods.

To collectively determine memory success for each encoding
event, these scores were integrated by performing a linear regression.
Inmoredetail, the finalmemory score, by considering all the scores for
the sources at all the 14 encoding time intervalswill be computed in the
following way:

Memory score =
X14

t = 1

k1�tscoreper tð Þ +
X14

t = 1

k2�tscoresus tð Þ +
X14

t = 1

k3�tscoresel tð Þ

ð8Þ

Where ki�j denotes the regression coefficient for source i (among
perception, sustained attention, and selective attention) and time
interval j (among [0–200ms], [100–300ms], [200–400ms], …,
[1200–1400ms], [1300–1500ms]). If the predicted memory score for
an event exceeds 0.5, it will be labeled as a hit and otherwise, it will be
labeled as a miss. This technique associates larger regression coeffi-
cients with sources and periods that are particularly important for
determining memory success and smaller coefficients to the sources
and periods that are not as important for determining memory suc-
cess. As a result, the linear regression coefficients provide critical
insight into which cognitive functions during which encoding periods
are particularly essential for memory formation for a participant (see
Supplementary Fig. 10A, 10B).

Inspecting the time-on-task effect on the levels of visual per-
ception, sustained attention, and selective attention
In these analyses, we looked at the position in which an event was
presented among the 240 presented encoding trials. For each encod-
ing event, we took an average of the level of perception, sustained
attention, and selective attention throughout the 14 time windows
during the encoding period (i.e., across the entire 1500ms after the
event’s onset) to end up with an average score for each source. Thus,
we ended up with 240 (i.e., the number of encoding events) evidence
scores for perception, 240 evidence scores for sustained attention,
and 240 evidence scores for selective attention and we investigated
how much each evidence scores change from the 1st encoding event
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until the 240th encoding event for hits and misses separately. To
inspect how the evidence scores for the three sources change from the
1st event to the 240th event for hits andmisses separately, it would be
ideal to have the evidence scores for every single trial number for both
hits andmisses for everyparticipant. But this is simply not possible and
is a limitation of this analysis. For example, for a participant, trials [4,
23, 76,…, 203, 239] were removed during preprocessing, trials [1, 2, 6,
8, 9, …, 237, 240] were hits, and trials [3, 5, 7, 11, …, 231, 238] were
misses. And these indices will be different for each participant. For this
analysis, however, it is necessary that each condition has source scores
for all 240 trial numbers for all participants. In this regard, for any trial
number (for hits and misses separately) that did not have evidence
scores, we used the evidence scores associated with the closest trial
number before that event. To elaborate, for a specific participant,
suppose twomisses are happening at trial numbers i and j and none of
the trials in between (i.e., trials i+ 1, i+2, . . ., j � 2, j � 1) aremisses. To
all of those trials in between,wewould associate the evidence scores of
trial i for that participant (Supplementary Fig. 11). We also tried asso-
ciating those trials the evidence scores of trial j and also the average of
the evidence scores of trials i and j and the results were very similar.
Importantly, the 240 trialswere shown in 4 separate blockswhere each
block consisted of 4 mini-blocks. For making the visualization and
analyses easier, we divided these 240 trials to 16 mini-blocks and
showed the average evidence for each source within each of these 16
mini-blocks (Fig. 4). To measure how much the neural evidence for a
source for each memory condition changes throughout the encoding
experiment, we computed the slope of evidence values against the
number of trials encoded across subjects. This was done by calculating
the Pearson correlation between the mini-block number and the
associated average evidence score for that source across participants.
In addition, to determine whether the time-on-task affects hits and
misses separately (i.e., hits and misses show different slopes), we cal-
culated the Pearson correlation between the mini-block number and
the difference of associated average evidence scores between hits and
misses for that source across participants. In other words, we tested
whether the evidence scores for each source for hits and misses have
significantly different slopes. Lastly, to determine whether the number
of misses increases throughout the encoding experiment, we calcu-
lated the number of misses during each mini-block across all partici-
pants and then computed the slope of number of misses per mini-
block against the number of mini-blocks across subjects. This was
done by calculating the Pearson correlation between the mini-block
number and the associated average number of misses across
participants.

Investigating the effect of encoding success history
We first investigated whether the encoding success history of the
previous event (i.e., whether the previous event was a hit or a miss)
could impact the underlying processes occurring during the current
event (collapsed and averaged across hits and misses). Given that the
brain states are not transient andpotentially last beyonda single event,
we expect this endurance to last more than a few hundred milli-
seconds. Moreover, there is no specific prediction that a particular
period during encoding such as [300–400ms] will be affected the
most. Thus, it is reasonable to investigate the encoding period in 3
chunks of 500ms (i.e., early encoding [0–500ms], middle encoding
[500–1000ms], and late encoding [1000–500ms]) instead of shorter
periods. For eachparticipant, we first averaged the evidence scores for
each three sources for hits after a hit and averaged the evidence scores
for each three sources formisses after a hit and then took an average to
end up with average evidence scores of the three sources in three
encoding periods for events after a hit. This was done similarly for
events after a miss. In other words, each participant had one average
evidence score for each source (i.e., perception, sustained attention,
selective attention) during each encoding period (i.e., early, middle,

late encoding) separately for events after a hit and events after a miss.
We submitted these neural evidence scores for the three sources at
different encoding periods to a memory condition (events after a hit
vs. events after a miss) × source (perception, sustained attention,
selective attention) × time (early encoding [0–500ms], middle
encoding [500–1000ms], late encoding [1000–1500ms]) ANOVA. We
performed a similar analysis to compare events preceding hits vs.
misses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data and materials used in the analysis are available on https://osf.
io/8vfy4/. Source data are provided with this paper.

Code availability
The codes used for the analysis are available on https://osf.io/8vfy4/.
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