
  

  

Abstract— Sleep is essential for episodic memory 
consolidation, involving the reactivation of neural patterns 
during encoding and retrieval. This study examined how sleep 
duration influences encoding-retrieval similarity (ERS) and 
memory performance across the adult lifespan. Fifty-five adults 
(18–79 years) participated in a seven-day protocol, combining 
actigraphy-based sleep monitoring with EEG and memory 
assessments during a paired associate learning task. Significant 
correlations between sleep duration and ERS were observed, 
with clusters showing positive and negative associations across 
brain regions. In match context trials, ERS in the left frontal 
region correlated with sleep duration, and age moderated these 
effects. In mismatch context trials, positive correlations were 
identified in the left posterior, left frontal, and right posterior 
regions. These results highlight the role of sleep in modulating 
neural reactivation patterns during memory retrieval and 
emphasize the influence of age. The study advances our 
understanding of how sleep variability impacts memory 
consolidation and provides a basis for exploring targeted sleep 
interventions. 
 

Clinical Relevance— This study highlights the impact of 
habitual sleep variability on neural reactivation patterns and 
memory retrieval across the adult lifespan. The findings 
emphasize the moderating role of age and suggest that 
improving sleep duration may enhance episodic memory 
performance. These insights could guide clinicians in developing 
personalized sleep interventions to support cognitive health and 
mitigate age-related memory decline. 

I. INTRODUCTION 

Sleep plays a crucial role in the consolidation of episodic 
memory, which involves the retention and integration of past 
experiences [1]. Experimental studies manipulating sleep 
conditions—such as variations in retrieval timing (morning vs. 
evening), sleep deprivation, and the presence of intervening 
naps—have consistently demonstrated that episodic memory 
is influenced by sleep across different age groups. Both 
younger and older adults show sleep-dependent memory 
effects, although age-related differences in sleep architecture 
may impact the extent of consolidation [2]. Moreover, 
polysomnography (PSG) research has identified specific EEG 
sleep patterns, such as slow-wave sleep (SWS) and sleep 
spindles, that correlate with memory enhancement in both 
populations [3]. However, most of these findings stem from 
highly controlled laboratory settings, which may not fully 
reflect naturalistic sleep patterns observed in home 
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environments. Additionally, many studies are limited to 
single-night assessments, necessitating further research to 
explore long-term memory effects under real-life sleep 
conditions.  

In addition, Poor sleep may contribute to declines in 
memory function in older adults. Compared to younger 
individuals, older adults tend to perform worse on memory 
tasks that require recollection-based retrieval, while their 
familiarity-based recognition remains relatively preserved [4]. 
For instance, associative memory performance declines more 
significantly with age than item recognition [5]. Interestingly, 
these same types of memory tasks are particularly dependent 
on sleep in both younger and older adults[6]. Age-related 
differences in sleep quality have been linked to poorer episodic 
memory performance, as demonstrated through self-report 
measures, actigraphy, and polysomnography [7], [8], [9]. 
Collectively, these studies highlight a consistent relationship 
between sleep quality and episodic memory performance 
across different age groups, reinforcing the critical role of 
sleep in memory consolidation throughout the lifespan. 

Actigraphy is a commonly used method for assessing 
habitual sleep, measuring key parameters such as total sleep 
time, sleep efficiency, and wake after sleep onset. 
Neurobiological models of memory propose that successful 
episodic memory retrieval depends on the reactivation of 
neural activity patterns from the encoding phase [10]. This 
concept is supported by encoding-retrieval similarity (ERS) 
analyses, which show that reactivation of encoding-related 
neural patterns enhances memory accuracy. Additionally, 
neuroimaging evidence suggests that event-specific neural 
reactivation is crucial for successful recollection. While ERS 
has been linked to episodic memory performance in young 
adults, the influence of habitual sleep quality on this 
relationship remains underexplored. This study addresses this 
gap by collecting one week of habitual sleep data using wrist-
worn accelerometers, capturing both average sleep quality and 
night-to-night variability, to examine their impact on episodic 
memory performance [11]. 

In this study, we utilized representational similarity 
analysis (RSA) to examine time-frequency EEG data recorded 
during a paired associate learning task. Specifically, we 
assessed event-specific oscillatory similarities across different 
frequency bands between encoding and retrieval phases across 
the adult lifespan. Given the well-established relationship 
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between sleep quality and memory performance in both young 
and older adults [12], we hypothesized that individual 
differences in memory performance and encoding-retrieval 
similarity (ERS) would be linked to variations in sleep quality. 
Additionally, we investigated the effects of age on these 
associations, aiming to understand how lifespan-related 
changes influence the relationship between sleep, memory, 
and neural reactivation patterns. 

 

II. METHODS 

A. Data Collection 
The study included 55 right-handed adults (28 females, 25 

males, 1 non-binary, and 1 transgender woman), aged 18 to 79 
years. Participants were categorized into two groups: young 
adults (18-36 years) and older adults (56-79 years). All 
individuals self-identified as native English speakers were 
right-handed and had normal or corrected-to-normal vision. 
None reported any uncontrolled psychiatric, neurological, or 
sleep disorders, nor any history of vascular disease. 

B. Experimental Design 
The study followed a seven-day experimental protocol, 

incorporating both laboratory visits and at-home data 
collection. On day 0, participants attended an initial lab session 
where they completed a neuropsychological assessment and 
were fitted with Actiwatch 2 accelerometers (Philips) to 
monitor habitual sleep patterns. Days 1 and 2 involved at-
home sleep tracking, with nightly sleep data recorded 
remotely. On day 3, participants returned to the lab to complete 
a memory encoding session followed by an immediate 
retrieval task. Days 4 to 6 continued with at-home sleep 
monitoring, culminating in a final lab visit on day 7 for a 
delayed memory retrieval assessment (Fig. 1). The memory 
task was designed to assess episodic memory performance. 
During encoding, participants were shown images of objects 
placed within scenes, each displayed for four seconds, 
followed by a 350-750 ms fixation cross. Their task was to 
evaluate whether the object logically fit within the scene, 
selecting from three response options: "Yes" (1), "No" (2), or 
"Somewhat" (3). During retrieval, participants viewed a series 
of images and categorized them into one of three conditions: 
“Same Old” (object and background remained unchanged), 
“Different Old” (the object was the same, but the background 
had changed), or “New” (entirely novel object) (Fig. 1). 

This structured design allowed for an integration of sleep 
monitoring and memory performance assessments, facilitating 
insights into the relationship between habitual sleep patterns 
and episodic memory consolidation across multiple time 
points.  

C. EEG Recording and Preprocessing 
EEG data were continuously recorded from 31 scalp 

electrodes using the Brain Vision ActiCAP system, following 
the extended 10–20 electrode placement system. Electrodes 
were positioned at Fp1, Fz, F3, F7, FT9, FC5, FC1, C3, T7, 
TP9, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, CP6, 
CP2, C4, T8, FT10, FC6, FC2, F4, F8, and Fp2. Additionally, 
two electrodes at the lateral canthi of the eyes recorded 
horizontal electrooculogram (HEOG), while two electrodes 
above and below the right eye captured vertical 

electrooculogram (VEOG). EEG signals were sampled at 500 
Hz with no initial filtering applied. 

Offline processing was conducted using MATLAB, 
incorporating the EEGLAB toolbox. The data underwent 
baseline correction within the time window of 400 to 200 ms 
prior to stimulus onset, and the sampling rate was down-
sampled from 500 Hz to 250 Hz. Re-referencing was 
performed using the average of the left and right mastoid 
electrodes, followed by bandpass filtering between 0.05 and 
80 Hz. To eliminate electrical interference, 60 Hz line noise 
was removed. Independent component analysis (ICA) was 
then applied to isolate and remove ocular artifacts such as 
blinks and eye movements. Trials with voltage fluctuations 
exceeding 150 microvolts were automatically rejected, with an 
additional manual review conducted to ensure data integrity. 

Time-frequency analysis was performed using Morlet 
wavelet transformations, with 38 frequencies evenly spaced 
between 3 and 40 Hz. The data were further down-sampled 
from 250 Hz to 50 Hz, and each trial was segmented to capture 
the relevant time window from 0 to 2,400 ms post-stimulus 
onset. This transformation produced a data matrix organized 
as trials × electrodes × frequency bands. Power estimates were 
calculated across 120 time intervals, each spanning 20 
milliseconds, aligned with the adjusted 50 Hz sampling rate 
(See ). Electrodes were grouped into four non-overlapping 
regions, and signals from electrodes within each region were 
averaged. The wavelet-transformed data were then divided 
into 22 overlapping time windows of 300 ms, with each 
window advancing by 100 ms [12].  

D. Data Analysis 
In this study, representational similarity analysis (RSA) 

was applied to investigate the relationship between EEG 
activity and memory performance during a visual memory 
encoding and retrieval task. In the encoding phase, 
participants were presented with visual scenes and asked to 
determine whether a specific object logically fit within the 
scene. During the retrieval phase, they were shown a 
combination of previously encountered and novel scenes and 
were required to classify the objects as matching or 
mismatching those seen during encoding. EEG oscillatory 

 
 Figure 1 The experimental design involved a combination of laboratory 

sessions and at-home sleep monitoring using accelerometers. Participants 
engaged in a memory encoding task where they determined whether an 
object logically fit within a scene. During the retrieval phase, they 
categorized the objects as "Same Old" (both the object and background 
were unchanged), "Different Old" (the object was the same, but the 
background had changed), or "New" (a novel object). The study spanned 
seven days, with habitual sleep data continuously collected between 
memory tasks to assess the relationship between sleep patterns and 
memory performance. 



  

power was recorded across a frequency range of 3 to 40 Hz 
during both encoding and retrieval. Power values were 
averaged within 300 ms time windows for each electrode, log-
transformed, and subsequently averaged across predefined 
brain regions (e.g., left frontal cortex). The analysis focused 
on differentiating between four key memory response types: 
hits, where participants correctly recognized a previously 
seen scene as a match; misses, where they failed to recognize 
a previously seen scene and mistakenly identified it; correct 
rejections, where they accurately identified an altered scene 
as mismatched; and false alarms, where they incorrectly 
classified a mismatched scene as a previously seen match. 

To examine neural similarity between encoding and 
retrieval, Pearson correlations were computed between EEG 
power vectors across 300 ms time windows. Within-event 
similarity, comparing retrieval events with their 
corresponding encoding events, was contrasted with between-
event similarity, which compared retrieval events with all 
encoding events from the same category. These analyses were 
conducted for hits, misses, correct rejections, and false alarms 
to assess how neural patterns distinguish successful from 
unsuccessful memory retrieval. 

Next, between-event similarity matrices were subtracted 
from within-event similarity matrices for each trial (“(1)” and 
“(2)”), and the resulting values were averaged across trials of 
the same type for each participant. This produced a time–time 
similarity matrix for each electrode region and trial condition. 
To isolate memory performance effects, the average 
similarity of missed trials was subtracted from that of hit 
trials, quantifying differences in neural activation patterns 
associated with successful and unsuccessful memory 
retrieval. 

Specifically, we calculated the difference between within-
event and between-event similarities for hits and misses:  

 
RSAhit-miss=(Whit-Bhit)-(Wmiss-Bmiss)  								         (1) 

 
 
Also, the difference between within-event and between-
event similarities for correct rejection (CR) and false alarm 
(FA): 
 

RSACR-FA=	(WCR-BCR)-(WFA-BFA)        													    (2) 
 
In both formula W is within event similarity, and B is 
between-event similarity. 
 

D.  Actigraphy 
We extracted key sleep metrics, including measures of 

sleep duration (total sleep time, wake after sleep onset 
(WASO), and the number of wake bouts) and sleep efficiency 
(overall efficiency and sleep onset latency). Sleep duration 
refers to the total time spent asleep during a sleep period, 
while WASO quantifies the total time spent awake after 
initially falling asleep. Wake bouts represent the number of 
times a participant awakened during sleep. Sleep efficiency is 
defined as the percentage of time spent asleep relative to total 
time in bed, and sleep onset latency refers to the time taken to 

transition from wakefulness to sleep. To analyze the 
relationship between sleep and memory retention, we 
calculated the average of five sleep metrics following the 
encoding phase, which we termed the retention period. We 
then conducted two separate principal component analyses 
(PCA) to identify key patterns within the data. For our 
analysis, we selected sleep duration as the focal metric and 
proceeded with further investigations based on this measure. 

E.  Statistical Analysis 
To identify significant clusters, we examined the 

correlations between sleep metrics and event-specific 
encoding-retrieval similarity across encoding periods, aiming 
to explore the relationship between sleep variability and 
neural reactivation patterns. Notably, this study incorporated 
delayed retrieval, providing deeper insights into how neural 
activity patterns over time influence long-term memory 
recall. The statistical significance of these temporally 
clustered correlations was evaluated through a permutation 
approach, where correlation values were randomly shuffled 
10,000 times to generate a null probability distribution for 
cluster-based statistical comparisons. Morever, to investigate 
the effect of age on clusters that showed significant 
associations with sleep duration, we applied a linear 
regression model. The model included encoding-retrieval 
similarity (ERS) as the dependent variable and age, sleep 
duration, and their interaction (age * sleep duration) as 
predictors, expressed as: ERS ~ Age + Sleep Duration + Age 
* Sleep Duration. 

 

III. RESULTS  

As outlined in the methods section, we computed 
correlations between sleep duration and event-specific 
encoding-retrieval similarity for both match attended context 

 
Figure 2. Encoding-retrieval similarity (ERS) time-time clusters for object-
scene pairs showing correlations with sleep. (A) Significant time intervals 
where mean sleep restlessness correlates with event-specific ERS are 
highlighted. The y-axis represents encoding intervals, and the x-axis 
represents retrieval intervals (in milliseconds). Clusters with positive 
correlations are shown in red, while negative correlations are in blue. 
Statistical significance was determined using a cluster-based permutation 
method. Clusters marked with a star indicate additional significant effects 
of age and the interaction between age and sleep. (B) The relationship 
between event-specific ERS and mean sleep restlessness is illustrated with 
95% confidence intervals for two example clusters from (A), one showing 
a positive correlation and the other a negative correlation, with similar 
patterns observed in other clusters. 

 



  

trials (hits and misses) and correct miss match attended context 
trials (correct rejections and false alarms). 

A.  Match Attended Context Tirals 
The clusters where sleep duration demonstrated significant 
correlations are presented in Fig. 2. For example, in the left 
frontal region, we identified two distinct clusters with 
opposing relationships to sleep duration. The first cluster 
exhibited a significant negative correlation during the 
encoding window of 300–1200 ms and the retrieval window 
of 0–800 ms. Conversely, the second cluster displayed a 
significant positive correlation, spanning the encoding 
window of 700–1300 ms and the retrieval window of 1100–
1400 ms. In this second cluster, the interaction between age 
and sleep duration also showed statistical significance, 
indicating that the effect of sleep duration on ERS is 
modulated by age. 

B. Missmatch Attended Context Tirals 
The clusters where sleep duration significantly correlates 

with event-specific ERS in mismatched context trials are 
shown in Fig. 3. For example, in the left posterior region, a 
single cluster demonstrated a significant positive correlation 
with sleep duration. This cluster spanned an encoding window 
of 400–1200 ms and a retrieval window of 500–1000 ms. 
Beyond the left posterior region, additional significant clusters 
were observed in the left frontal and right posterior regions, all 
showing positive correlations with sleep duration (Fig. 3). 
Notably, one cluster in the left frontal region (marked with a 
star in Fig. 3) indicates that the relationship between sleep 
duration and ERS is influenced by age, highlighting the role of 
age as a moderating factor in these neural patterns.  

 
Figure 3 Encoding-retrieval similarity (ERS) clusters showing correlations 
with sleep duration for correct rejection (CR) and false alarm (FA) trials. (A) 
Time-time clusters are displayed for four brain regions (left frontal, right 
frontal, left posterior, and right posterior). The y-axis represents encoding 
time (ms), and the x-axis represents retrieval time (ms). Clusters with 
significant positive correlations are shown in red, while blue indicates 
negative correlations. Clusters marked with a star (*) indicate additional 
significance for interactions between sleep duration and age. (B) Scatterplots 
for two example clusters (labeled 1 and 2 in A) illustrate the relationship 
between sleep duration and ERS values, with blue lines representing 
regression fits and shaded areas showing 95% confidence intervals. 

IV. DISCUSSION 
In this study, we used EEG to examine episodic neural 

reinstatement effects, focusing on image-pair-specific activity 
patterns. We observed that neural activity during encoding 

and retrieval was correlated within similar time intervals, 
indicating a strong temporal alignment. Interestingly, we also 
identified significant asymmetries in encoding-retrieval 
similarity (ERS) effects, where encoding activity correlated 
with retrieval activity occurring either earlier or later in time. 
These symmetrical and asymmetrical reinstatement effects 
were influenced by variations in sleep duration, suggesting 
that sleep may play a critical role in modulating the efficiency 
and timing of these neural reactivation processes. This 
modulation potentially impacts how effectively memory 
traces are accessed and reinstated during retrieval [13]. Our 
findings extend previous research by showing that sleep not 
only affects overall memory performance but also influences 
the temporal dynamics of neural reinstatement critical for 
successful episodic retrieval.  

Clusters in match event trials revealed both positive and 
negative correlations between encoding-retrieval similarity 
(ERS) and sleep duration. These findings are consistent with 
earlier research, which similarly identified both positive and 
negative relationships between sleep metrics and ERS [12], 
[14]. Furthermore, this study extends our previous work, 
where we demonstrated both positive and negative clusters 
between ERS and sleep restlessness [12]. Here, we replicate 
these effects using sleep duration as a key variable, 
confirming its influence on neural reinstatement patterns. In 
contrast, clusters in mismatch event trials showed only 
positive correlations between ERS and sleep duration. This 
suggests that longer sleep duration directly enhances the 
ability to reject false memories in both younger and older 
adults, highlighting the role of sleep in supporting accurate 
memory discrimination across age groups [15]. 

 Our findings revealed that the relationship between sleep 
duration and left frontal ERS in both matched and 
mismatched trials was moderated by chronological age. This 
aligns with prior research demonstrating event-specific neural 
reinstatement over frontal regions in young adults[16]. 
Furthermore, the late time course of the observed frontal ERS 
effects is consistent with ERP studies, which have shown 
sustained frontal ERPs distinguishing recollected events 
based on study task history or associated perceptual contexts, 
such as face versus scene contexts[17]. A plausible 
interpretation of these frontal ERS effects is that they reflect 
post-retrieval monitoring processes mediated by the 
prefrontal cortex (PFC). These processes likely include the 
maintenance, manipulation, and evaluation of retrieved 
memory representations to support accurate decision-making 
[18]. These findings emphasize the critical role of frontal 
neural activity in regulating memory retrieval processes and 
underscore the influence of sleep duration on these 
mechanisms, particularly in younger individuals. 

In summary, the findings reinforce the link between sleep 
quality and episodic memory retrieval, highlighting how sleep 
affects both the occurrence and timing of neural reactivation. 
These insights could inform interventions to enhance memory, 
particularly for individuals with sleep disturbances. Future 
research should explore how specific sleep stages influence 
ERS and assess sleep-based interventions to improve memory 
performance, especially in older adults. 

 



  

V. CONCLUSION 

This study highlights the significant role of sleep duration 
in modulating neural mechanisms underlying episodic 
memory retrieval across the adult lifespan. Using EEG and 
representational similarity analysis (RSA), we found that 
sleep duration influences encoding-retrieval similarity (ERS) 
patterns, with match trials showing both positive and negative 
correlations and mismatch trials displaying exclusively 
positive correlations. These findings suggest that sleep 
duration enhances the ability to reject false memories and 
supports effective memory retrieval. The relationship 
between sleep duration and left frontal ERS was moderated 
by age, emphasizing lifespan-related differences in memory 
processes. These results extend previous research by showing 
that sleep not only affects overall memory performance but 
also the temporal dynamics of neural reinstatement. The 
findings underscore the role of the prefrontal cortex in post-
retrieval processes such as maintaining and evaluating 
memory representations. This study provides a foundation for 
future research to explore the effects of specific sleep stages 
on memory and to develop sleep-based interventions to 
improve cognitive function, particularly in older adults or 
individuals with sleep disturbance 

 

 

 

ACKNOWLEDGMENT 

 

 

REFERENCES 
[1] B. Rasch and J. Born, “About sleep’s role in memory,” Physiol 

Rev, vol. 93, no. 2, pp. 681–766, 2013, doi: 
10.1152/PHYSREV.00032.2012. 

[2] J. M. Wilson, P. J. Marin, M. R. Rhea, S. M. C. Wilson, J. P. 
Loenneke, and J. C. Anderson, “Concurrent training: a meta-
analysis examining interference of aerobic and resistance 
exercises,” J Strength Cond Res, vol. 26, no. 8, pp. 2293–2307, 
Aug. 2012, doi: 10.1519/JSC.0B013E31823A3E2D. 

[3] B. A. Mander, J. R. Winer, and M. P. Walker, “Sleep and Human 
Aging,” Neuron, vol. 94, no. 1, p. 19, Apr. 2017, doi: 
10.1016/J.NEURON.2017.02.004. 

[4] J. D. Koen and A. P. Yonelinas, “The effects of healthy aging, 
amnestic mild cognitive impairment, and Alzheimer’s disease on 
recollection and familiarity: a meta-analytic review,” 
Neuropsychol Rev, vol. 24, no. 3, pp. 332–354, Sep. 2014, doi: 
10.1007/S11065-014-9266-5. 

[5] S. R. Old and M. Naveh-Benjamin, “Differential Effects of Age 
on Item and Associative Measures of Memory: A Meta-
Analysis,” Psychol Aging, vol. 23, no. 1, pp. 104–118, 2008, doi: 
10.1037/0882-7974.23.1.104. 

[6] S. Diekelmann, I. Wilhelm, and J. Born, “The whats and whens of 
sleep-dependent memory consolidation,” Sleep Med Rev, vol. 13, 
no. 5, pp. 309–321, Oct. 2009, doi: 
10.1016/J.SMRV.2008.08.002. 

[7] A. Mary, S. Schreiner, P. Peigneux, S. J. Gotts, and B. A. 
Mander, “Accelerated long-term forgetting in aging and intra-

sleep awakenings,” Front Psychol, vol. 4, p. 63125, Oct. 2013, 
doi: 10.3389/FPSYG.2013.00750. 

[8] B. A. Mander et al., “Prefrontal atrophy, disrupted NREM slow 
waves and impaired hippocampal-dependent memory in aging,” 
Nat Neurosci, vol. 16, no. 3, pp. 357–364, Mar. 2013, doi: 
10.1038/NN.3324. 

[9] E. Hokett and A. Duarte, “Age and race-related differences in 
sleep discontinuity linked to associative memory performance and 
its neural underpinnings,” Front Hum Neurosci, vol. 13, p. 
458294, Feb. 2019, doi: 10.3389/FNHUM.2019.00176/BIBTEX. 

[10] K. A. Norman and R. C. O’Reilly, “Modeling Hippocampal and 
Neocortical Contributions to Recognition Memory: A 
Complementary-Learning-Systems Approach,” Psychol Rev, vol. 
110, no. 4, pp. 611–646, Oct. 2003, doi: 10.1037/0033-
295X.110.4.611. 

[11] E. M. Gordon, T. O. Laumann, B. Adeyemo, J. F. Huckins, W. M. 
Kelley, and S. E. Petersen, “Generation and Evaluation of a 
Cortical Area Parcellation from Resting-State Correlations,” 
Cereb Cortex, vol. 26, no. 1, pp. 288–303, Jan. 2016, doi: 
10.1093/CERCOR/BHU239. 

[12] M. Seraji, S. Mirjalili, A. Duarte, and V. D. Calhoun, 
“Investigating the Impact of Habitual Sleep Quality on Episodic 
Memory Performance: An EEG-Based Representational 
Similarity Analysis,” bioRxiv, p. 2024.11.08.622661, Nov. 2024, 
doi: 10.1101/2024.11.08.622661. 

[13] B. A. Mander, J. R. Winer, W. J. Jagust, and M. P. Walker, 
“Sleep: A novel mechanistic pathway, biomarker, and treatment 
target in the pathology of Alzheimer’s disease?,” Trends 
Neurosci, vol. 39, no. 8, p. 552, Aug. 2016, doi: 
10.1016/J.TINS.2016.05.002. 

[14] E. Hokett, S. Mirjalili, and A. Duarte, “Greater sleep variance 
related to decrements in memory performance and event-specific 
neural similarity: a racially/ethnically diverse lifespan sample,” 
Neurobiol Aging, vol. 117, pp. 33–43, Sep. 2022, doi: 
10.1016/J.NEUROBIOLAGING.2022.04.015. 

[15] C. R. Newbury, R. Crowley, K. Rastle, and J. Tamminen, “Sleep 
Deprivation and Memory: Meta-Analytic Reviews of Studies on 
Sleep Deprivation Before and After Learning,” Psychol Bull, vol. 
147, no. 11, p. 1215, Nov. 2021, doi: 10.1037/BUL0000348. 

[16] K. Yaffe, C. M. Falvey, and T. Hoang, “Connections between 
sleep and cognition in older adults,” Lancet Neurol, vol. 13, no. 
10, pp. 1017–1028, Oct. 2014, doi: 10.1016/S1474-
4422(14)70172-3/ASSET/F8D83E3F-925E-4333-9968-
9D062170AC04/MAIN.ASSETS/GR2.GIF. 

[17] J. D. Johnson and M. D. Rugg, “Recollection and the 
reinstatement of encoding-related cortical activity,” Cereb Cortex, 
vol. 17, no. 11, pp. 2507–2515, Nov. 2007, doi: 
10.1093/CERCOR/BHL156. 

[18] “Retrieval Processing in Human Memory: Electrophysiological 
and fMRI Evidence.” Accessed: Feb. 07, 2025. [Online]. 
Available: https://psycnet.apa.org/record/2005-01373-096 

  


