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ABSTRACT 

 
Sleep is crucial for episodic memory consolidation, yet the 

impact of habitual sleep quality on memory performance 

remains underexplored. This study investigates the 

relationship between sleep quality and episodic memory 

retrieval using EEG-based representational similarity 

analysis (RSA). Thirty-six participants wore wrist 

accelerometers for one week to capture habitual sleep 

patterns, including total sleep time and restlessness. Memory 

performance was assessed through a paired associate learning 

task, with EEG data recorded during encoding and retrieval 

phases. RSA was applied to EEG oscillatory power across 

time-frequency windows to examine the neural similarity 

between encoding and retrieval. The results showed both 

positive and negative correlations between sleep metric and 

memory performance, with sleep restlessness being linked to 

both increases and decreases in neural similarity across 

specific clusters. These findings emphasize the important role 

of sleep quality in shaping the neural processes underlying 

episodic memory retrieval, indicating a strong connection 

between sleep patterns and memory function. 

 
          Index Terms— EEG, memory, natural sleep, 

encoding-retrieval similarity (ERS), representational 

similarity analysis (RSA) 

 

1. INTRODUCTION 

 

Sleep plays a critical role in consolidating episodic 

memory [1]. Experimental studies manipulating sleep 

conditions—such as comparing morning versus evening 

retrieval, sleep deprivation, or the presence of intervening 

naps—have shown that episodic memory (i.e., memory of 

past experiences) is influenced by sleep in both younger and 

older adults [2]. Additionally, polysomnography research has 

identified EEG sleep patterns associated with memory 

consolidation across different age groups [3]. However, these 

studies are typically conducted in controlled settings and 

often do not capture natural sleep patterns in a home 

environment or extend beyond a single night of monitoring. 

A widely used method for evaluating habitual sleep is 

actigraphy, which provides various sleep parameters, 

including total sleep time, sleep efficiency, and wake after 

sleep onset. Neurobiological models of memory suggest that 

successful retrieval of episodic memories relies on the 

reactivation of neural activity patterns and processes involved 

during the initial encoding phase [4]. This concept has been 

supported by neuroimaging research in young adults using 

encoding-retrieval similarity (ERS) analyses, which 

demonstrate that reactivation of encoding-related neural 

patterns reflects task-specific and category-level information 

crucial for memory accuracy [5]. Additionally, neuroimaging 

evidence shows that reactivation of event-specific neural 

patterns, beyond just category or task reactivation, plays a 

vital role in successful recollection [6], [7]. Although ERS 

has been linked to episodic memory performance in young 

adults [6], the role of habitual sleep quality in this relationship 

remains relatively underexplored. In this study, we collected 

habitual sleep data over one week using wrist-worn 

accelerometers, allowing us to capture both average sleep 

quality and night-to-night variability. This enabled us to 

investigate how these sleep measures influence episodic 

memory performance. To assess neural similarity between 

encoding and retrieval, we applied representational similarity 

analysis (RSA) to time-frequency EEG data obtained during 

a paired associate learning task. Specifically, we evaluated 

event-specific, oscillatory similarities across various 

frequencies between paired associates during encoding and 

retrieval across the adult lifespan. Given the established link 

between sleep quality and memory performance in both 

young and older adults [3], we hypothesize that individual 

differences in both memory performance and ERS will be 

associated with differences in sleep quality. It is important to 

note that we collected data from both young and older 

participants; however, the current results are preliminary, and 

we have not yet analyzed the effect of age in this study. 

 

2. METHODS 

 
2.1. Participants 

 



The participant sample consisted of 36 right-handed adults 

(22 females, 12 males, 1 other, 1 transgender-woman), 

ranging in age from 18 to 74 (young group:18-36, old group: 

56-74) years (M = 38, SD = 20). All participants self-reported 

being native English speakers, right-handed, and having 

normal or corrected-to-normal vision. None reported any 

uncontrolled psychiatric, neurological, or sleep disorders, nor 

vascular disease. Out of the 36 participants, sleep data was 

missing for three, resulting in a final sample of 33 participants 

included in the analysis. 

 

2.2. Procedure 

 
The experimental design spans seven days, involving lab 

visits and at-home data collection. On Day 0, participants 

visit the lab for neuropsychological assessments and the setup 

of accelerometers (Actiwatch 2, Philips) to track habitual 

sleep patterns. Over Days 1-2, participants were at home, 

where nightly sleep data was recorded. On Day 3, they return 

to the lab for memory encoding and immediate memory 

retrieval tasks. Days 4-6 involve continued at-home 

monitoring, followed by a final lab visit on Day 7 for a 

delayed memory retrieval task (Fig. 1). In the memory task, 

during the encoding phase, participants were shown images 

of objects within scenes for 4 seconds, followed by a 350-

750ms fixation screen. They were asked whether the object 

fits within the scene, with possible responses being "Yes" (1), 

"No" (2), or "Somewhat" (3). In the retrieval phase, 

participants viewed images and were asked to classify them 

as either "Same Old" (when both the object and background 

were unchanged), "Different Old" (when the object was the 

same, but the background had changed), or "New" (when the 

object was new) (Fig. 1). 

 

Fig. 1. The experimental design consisted of lab visits and 

at-home sleep tracking using accelerometers. Participants 

completed memory encoding tasks by judging if an object 

fit within a scene. During retrieval, they identified whether 

the object was "Same Old" (both object and background 

were unchanged), "Different Old" (the object was the same, 

but the background had changed), or "New" (the object was 

new). The study spanned 7 days, with habitual sleep data 

collected between tasks. 

2.3. EEG acquisition and preprocessing 

 

Continuous EEG data were recorded from 31 scalp electrodes 

using the Brain Vision ActiCAP system. The electrodes were 

positioned according to the extended 10–20 system [8], with 

placements at Fp1, Fz, F3, F7, FT9, FC5, FC1, C3, T7, TP9, 

CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, CP6, CP2, 

C4, T8, FT10, FC6, FC2, F4, F8, and Fp2. Additionally, two 

electrodes at the lateral canthi of the right and left eyes 

captured horizontal electrooculogram (HEOG), while two 

electrodes placed above and below the right eye recorded 

vertical electrooculogram (VEOG). The EEG data were 

sampled at 500 Hz without the application of any high or low 

pass filters. 

EEG data was analyzed offline using MATLAB with the 

EEGLAB [9] and FIELDTRIP [10] toolboxes. The data 

underwent baseline correction from 400 to 200 ms prior to 

stimulus onset, with the sampling rate reduced from 500 Hz 

to 250 Hz. It was re-referenced to the average of the left and 

right mastoid electrodes, bandpass-filtered between 0.05 and 

80 Hz, and 60 Hz line noise was also removed. Initial artifact 

removal involved visual inspection to discard trials with 

muscle, electrode, or sweat artifacts. An independent 

component analysis (ICA) was then performed to detect and 

remove ocular artifacts (e.g., blinks, eye movements). Epochs 

with extreme voltages over 150 microvolts were 

automatically excluded, with further manual inspection for 

any remaining artifacts. Finally, time-frequency analysis was 

conducted using Morlet wavelets [9]. 

In the wavelet analysis, 38 linearly spaced frequencies 

between 3 and 40 Hz were used [11], and the data were 

subsequently down-sampled from 250 Hz to 50 Hz. During 

the wavelet transformation, each epoch was reduced to the 

time range of interest (0–2,400 ms post-stimulus onset). As a 

result, the data dimensions were transformed to n (trials) × 31 

(electrodes) × 38 (frequencies), with power values calculated 

for 120 time bins of 20 ms each (corresponding to the 50 Hz 

sampling rate over 2.4 seconds). We grouped the electrodes 

into four distinct, non-overlapping regions (as illustrated in 

Fig. 2) and averaged the signals from all electrodes within 

each region. The wavelet transforms were segmented into 22 

time windows of 300 ms each, with consecutive windows 

overlapping by 100 ms. A detailed summary of these 

procedures is provided in Fig. 2. 

 

2.4. RSA Analysis 

 
We used RSA in this study to examine how EEG signals 

correspond to memory performance during a memory 

encoding and retrieval task. Participants first encoded visual  

scenes by determining whether specific objects fit within 

scene (encoding phase). Later, during retrieval, they were 

asked to identify whether objects in new/old scenes matched 

what they had seen during encoding (retrieval phase). EEG 

oscillatory power from 3 to 40 Hz was measured during both 

encoding and retrieval, and these power values were averaged 

within 300 ms time windows for each electrode. The values 

were then log-transformed and averaged across electrodes in 



specific brain regions (e.g., left frontal). The key analysis 

focused on two memory conditions: hits and misses. A hit 

was defined as correctly identifying a previously attended 

scene as a match during retrieval, while a miss was 

incorrectly identifying a matched attended scene as a 

mismatch.  

We assessed neural similarity between encoding and 

retrieval by computing Pearson correlations of EEG power 

vectors across the entire frequency spectrum within 300 ms 

windows, providing a comprehensive view of neural activity. 

This method aligns with prior EEG studies [12], [13], [14]. 

We then compared within-event similarity (retrieval event 

and the associated matching encoding event) and between-

event similarity (retrieval event compared with all encoding 

events from the same category). This was done for hits and 

misses to examine how neural patterns differentiate between 

successful and unsuccessful memory retrievals. In the next 

step of the analysis, we subtracted the between-event 

similarity matrices from the within-event similarity matrices 

for each trial. We then averaged these event-specific, time–

time similarity matrices across trials of the same type for each 

participant, generating an overall average time–time 

similarity matrix for each electrode region and trial type. To 

isolate memory performance differences, we subtracted the 

average miss similarity from the average hit similarity. 

Specifically, we calculated the difference between within-

event and between-event similarities for hits and misses: 

(within-hit − between-hit) − (within-miss − between-miss). 

 
2.5. Actigraphy data 

 
We extracted key sleep metrics, including total sleep time 

(TST), sleep efficiency, fragmentation, sleep onset latency, 

wake after sleep onset (WASO), and the number of wake 

bouts, for analysis. TST represents the total time spent asleep 

during a sleep period, while sleep efficiency is the percentage 

of time spent asleep while in bed. Sleep fragmentation 

reflects restlessness during sleep, onset latency is the time it 

takes to fall asleep, WASO captures the total time awake after 

falling asleep, and wake bouts count the number of 

awakenings during sleep. We calculated the mean and 

variance of six sleep metrics over seven days and performed 

two separate principal component analysis (PCA). These six 

variables were grouped into two primary components: sleep 

duration (including total sleep time, sleep efficiency, and 

inverse sleep onset latency) and restless sleep (including 

fragmentation, WASO, and wake bouts). 

 

2.5. Statistical analysis 

 

To identify significant clusters, correlations between sleep 

metrics and event-specific encoding-retrieval similarity were 

calculated for each encoding period to explore the 

relationship between sleep variability and neural reactivation 

patterns. Time windows with correlation values exceeding a 

predetermined threshold (p ≤ 0.05) were selected and 

grouped into contiguous clusters based on temporal 

proximity. For example, if the ([200–500 ms] encoding, 

[500–800 ms] retrieval) and ([300–600 ms] encoding, [500–

800 ms] retrieval) windows both showed significant 

correlations, they would be combined into a single cluster 

covering ([200–600 ms] encoding, [500–800 ms] retrieval). 

It is important to note that this study utilized delayed 

retrieval, offering further insights into how neural activity 

patterns over time contribute to long-term memory recall. 

The significance of these newly combined temporal clusters 

was assessed by permuting the correlation values 10,000 

times, creating a null probability distribution for the cluster-

based statistics [15]. 

Fig. 2. The methodology for the representational similarity analysis (RSA) consisted of three main steps: (A) dividing the 

brain into four regions (left frontal, right frontal, left posterior, right posterior), and (B) averaging EEG power within each 

300 ms time window for each frequency and electrode. These power values were log-transformed and averaged across 

electrodes within each brain region to generate a vector of 38 log-transformed power values (spanning 3–40 Hz), known as 

representational patterns. For each brain region, these vectors were further averaged to create a single representative vector 

for the region. In the figure, the time windows from 300–600 ms during encoding (left pattern) and 800–1,100 ms during 

retrieval (right pattern) for the left frontal region are highlighted with dashed white lines. (C) The representational patterns 

from these time windows are correlated using Pearson correlation, with the correlation coefficient displayed as a black square 

on the matrix. This process is repeated for all time windows during encoding and retrieval, resulting in a full correlation 

matrix.  



 

3. RESULTS 

 
After performing PCA, the analysis reduced correlated 

variables into uncorrelated components that capture the data's 

variance, we identified two primary sleep metrics: sleep 

duration and restlessness, each defined by its mean and 

variance, resulting in four total metrics. We then computed 

the correlation between d-prime [16], a measure of memory 

performance, and each of the sleep metrics. For further 

analysis, we selected mean restlessness as the sleep metric 

most strongly correlated with d-prime. 

As described in the methods section, we calculated 

correlations between sleep metrics and event-specific ERS. 

The clusters where mean restlessness shows significant 

correlation are displayed in Fig. 3. For instance, in the left 

frontal region, we identified two clusters that exhibited 

negative correlations with mean restlessness. The first cluster 

showed significant negative correlation during an encoding 

window of 700–1300 ms and a retrieval window of 0–600 ms. 

The second cluster, spanning the 700–1100 ms encoding 

window and the 1300–1800 ms retrieval window, also 

exhibited a negative correlation with mean restlessness. 

Beyond the left frontal region, other significant clusters were 

observed in the right frontal, left posterior, and right posterior 

regions, with positive correlations (Fig. 3). 

 
4. DISCUSSION AND CONCULSION 

 

Successful episodic memory retrieval is thought to rely on the 

reactivation of neural activity patterns and associated 

cognitive processes that were present during the original 

encoding of the event [4] . In this study, we used EEG to 

investigate episodic neural reinstatement effects that are 

sensitive to image-pair-specific activity patterns. We found 

that neural activity during encoding and retrieval was 

correlated within similar time intervals. Interestingly, we also 

observed significant asymmetries in ERS effects, where 

encoding activity was correlated with retrieval activity 

occurring either earlier or later in time. Several factors could 

explain these asymmetrical ERS patterns. One possibility is 

that encoding-related activity, and its associated cognitive 

processes may persist longer during encoding than during 

retrieval, leading to later encoding intervals correlating with 

earlier retrieval intervals. This explanation aligns with 

findings suggesting that episodic reinstatement occurs on a 

temporally compressed timescale relative to the original 

encoding process [17]. Another, non-mutually exclusive 

explanation is that some cognitive processes occurring earlier 

during encoding, such as perceptual encoding, may be 

reinstated later during retrieval, particularly during efforts to 

recall previously learned word image or to reject rearranged 

ones  [18]. Moreover, these symmetrical and asymmetrical 

reinstatement effects appeared to be linked to variations in 

sleep quality. Specifically, sleep restlessness in sleep patterns 

may influence the efficiency and timing of these neural 

reactivation processes, potentially affecting how effectively 

memory traces are accessed and reinstated during retrieval. 

This extends previous findings by highlighting the role of 

sleep in modulating not just overall memory performance, but 

also the temporal dynamics of neural reinstatement that 

underpin successful episodic retrieval. Furthermore, in 

clusters showing a negative correlation, higher restlessness 

(indicating poor sleep) is associated with worse memory 

performance [19]. On the other hand, in clusters with a 

positive correlation between ERS, a potential explanation for 

these results could lie in the distinct roles that familiarity and 

recollection play in the associative recognition of object-

scene pairs [13]. This aligns with previous studies that found 

both positive and negative correlations between sleep metrics 

and ERS [13]. Future research should focus on exploring how 

these sleep-memory relationships differ across age groups, 

particularly whether the connection between sleep quality 

and memory is stronger or weaker in older adults compared 

to younger individuals. 

In summary, the findings reinforce the link between 

sleep quality and episodic memory retrieval, highlighting 

how sleep affects both the occurrence and timing of neural 

reactivation. These insights could inform interventions to 

enhance memory, particularly for individuals with sleep 

disturbances. 

Fig. 3. ERS time-time clusters for object-scene pairs 

displaying correlations with sleep. (A) Each figure 

highlights the time intervals showing significant correlations 

between mean sleep restlessness and event-specific ERS. 

Encoding intervals on the y-axis and retrieval intervals on 

the x-axis (in m-seconds). Clusters with positive correlations 

are shown in red, and those with negative correlations are 

shown in blue. The clusters were corrected using the cluster-

based permutation method. (B) The relationship between 

event-specific ERS and mean restlessness (with 

corresponding 95% confidence intervals) is illustrated for 

two of the clusters shown in part (A). These two clusters are 

provided as examples, one demonstrating a positive 

correlation and the other a negative correlation, with similar 

patterns observed across the remaining clusters. 
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