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Abstract

Previous studies have attempted to separate single trial neural responses for events a person is 

likely to remember from those they are likely to forget using machine learning classification 

methods. Successful single tria classification holds potential for translation into the clinical realm 

for real-time detection of memory and other cognitive states to provide real-time interventions 

(i.e., brain-computer interfaces). However, most of these studies—and classification analyses in 

general—do not make clear if the chosen methodology is optimally suited for the classification 

of memory-related brain states. To address this problem, we systematically compared different 

methods for every step of classification (i.e., feature extraction, feature selection, classifier 

selection) to investigate which methods work best for decoding episodic memory brain states—the 

first analysis of its kind. Using an adult lifespan sample EEG dataset collected during performance 

of an episodic context encoding and retrieva task, we found that no specific feature type (including 

Common Spatial Pattern (CSP)-based features, mean, variance, correlation, features based on 

AR model, entropy, phase, and phase synchronization) outperformed others consistently in 

distinguishing different memory classes. However, extracting all of these feature types consistently 

outperformed extracting only one type of feature. Additionally, the combination of filtering and 

sequential forward selection was the optimal method to select the effective features compared 

to filtering alone or performing no feature selection at all. Moreover, although all classifiers 
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performed at a fairly similar level, LASSO was con sistently the highest performing classifier 

compared to other commonly used options (i.e., naïve Bayes, SVM, and logistic regression) while 

naïve Bayes was the fastest classifier. Lastly, for multiclass classification (i.e., levels of context 

memory confidence and context feature perception), generalizing the binary classification using 

the binary decision tree performed better than the voting or one versus rest method. These methods 

were shown to outperform alternative approaches for three orthogonal datasets (i.e., EEG working 

memory, EEG motor imagery, and MEG working memory), supporting their generalizability. Our 

results provide an optimized methodological process for classifying single-trial neural data and 

provide important insight and recommendations for a cognitive neuroscientist’s ability to make 

informed choices at all stages of the classification process for predicting memory and other 

cognitive states.

Keywords

Classification; Episodic memory; Electroencephalography; Method comparison; Brain-computer 
interface

1. INTRODUCTION

For decades, researchers have been interested in distinguishing the neural activity associated 

with different cognitive states in various domains including motor imagery (reviewed in Ang 

& Guan, 2017; Fadiga & Craighero, 2004; Savaki & Raos, 2019), episodic and semantic 

memory (reviewed in Friedman & Johnson, 2000; Herweg, Solomon, & Kahana, 2020; 

Jaeger & Parente, 2008; Peigneux, 2015; T.-T. Wang, Mo, & Shu, 2009), emotion (reviewed 

in Dixon, Thiruchselvam, Todd, & Christoff, 2017; Lindquist, Wager, Kober, Bliss-Moreau, 

& Barrett, 2012; Phan, Wager, Taylor, & Liberzon, 2002), language (reviewed in Baciu & 

Perrone-Bertolotti, 2015; Beres, 2017; Brown & Hagoort, 2003; Friederici, 2004; Gabrieli, 

Poldrack, & Desmond, 1998), perception and attention (reviewed in Pessoa & Ungerleider, 

2004; Taylor & Thut, 2012; Woodman, 2010), etc. The vast majority of these studies, 

using either functional magnetic resonance imaging (fMRI) or electroencephalography 

(EEG) methods, have used an averaging approach. That is, signals from many trials of a 

particular type are averaged together to increase signal to noise ratios and consequently, 

the power to detect the differences between two or more cognitive states (e.g., successful 

vs. unsuccessful memory, negative vs. neutral events). While the signal averaging approach 

provides important insight about neural differences between distinct cognitive states, a major 

limitation of this approach is that it does not allow for the exploration of single trials 

associated with cognitive states that might vary from moment to moment. For instance, 

consider episodic memory and the neural underpinnings of successful or unsuccessful 

encoding of different events. It is highly likely that not every event will be learned in 

the exact same way, with encoding strategy or depth varying between events; by using an 

averaging strategy, these neural differences between single events will be lost.

Exploration of brain states associated with single events—particularly when recorded from 

the scalp using EEG due to its relative non intrusiveness and portability—holds great 

potential for real world applications (reviewed in Abiri, Borhani, Sellers, Jiang, & Zhao, 
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2019; Belkacem, Jamil, Palmer, Ouhbi, & Chen, 2020; Carelli et al., 2017; Enriquez-

Geppert, Huster, & Herrmann, 2017). For the case of episodic memory, if it is possible 

to detect the preparedness of the brain for learning with high accuracy, one could build a 

practical intervention system to support everyday learning. For instance, consider a student 

who wants to study for an exam. When their memory is working optimally, the system could 

give the student positive feedback that they are learning the material. However, once the 

system detects a decline in memory encoding, it could provide a warning to the student to 

take a break or study that material again, depending on the parameters that best facilitate 

learning. Such a system could also be beneficial for teachers who could decide when to give 

students a break or start new material. As a result, this hypothetical brain computer interface 

(BCI) system could prove helpful in customizing learning and memory for many individuals. 

BCI systems such as robotic exoskeletons and smart wheelchairs have been used to great 

success in the real-world for patients with motor impairments as these systems can detect 

the patients’ movement intentions with high accuracy (Belkacem et al., 2020). However, in 

the memory domain, this hypothetical system does not yet exist. Before such a system can 

be implemented in real life, it is first necessary to ensure that it is possible to accurately 

determine an individual’s episodic learning preparedness.

Machine learning methods are powerful tools that can make use of multidimensional 

data to successfully discriminate neural activity between different cognitive states. The 

standard machine learning procedure consists of feature extraction, feature selection or 

dimensionality reduction, and training a classifier (reviewed in Lotte et al., 2017). For 

feature extraction, some of the most common types of features used in EEG classification 

include voltage amplitude (Kaper, Meinicke, Grossekathoefer, Lingner, & Ritter, 2004), 

frequency power (Pfurtscheller, Neuper, Flotzinger, & Pregenzer, 1997), and phase of 

different frequency bands (Wei, Wang, Gao, & Gao, 2007). Statistical features including 

the mean and variance of the signal, and correlation between signals of two channels are 

also sometimes used, as are model-based or parametric features such as the coefficients 

derived from Autoregressive Modeling (Paranjape, Mahovsky, Benedicenti, & Koles’, 2001). 

Moreover, entropy-based features (Song & Liò, 2010) and common spatial pattern (CSP)-

based features (Ramoser, Muller-Gerking, & Pfurtscheller, 2000) are frequently used in 

classification studies as well. A subset of features that are most informative for classifying 

brain states are selected using filter methods such as filtering by Fisher score (Abdi, 2006; 

McLachlan, 1992), and wrapper methods such as sequential forward selection (Dash & Liu, 

1997). It is important to note that in some cognitive studies, this step is ignored, and all of 

the extracted features are used for classification. Lastly, the classifier is trained. Powerful 

classifiers that are commonly used in the literature include support vector machine (SVM) 

(Burges, 1998), linear discriminant analysis (LDA) (Fukunaga, 1990), logistic regression 

(Ng & Jordan, 2002), naïve bayes (Fukunaga, 1990), artificial neural networks (Bishop, 

1995), and decision trees (A.K. Jain, R.P.W. Duin, & J. Mao, 2000).

There have been several attempts in the literature to separate single trial neural responses 

in EEG for events a person is likely to remember from those they are likely to forget using 

machine learning strategies (Astrand, 2018; Chakravarty, Chen, & Caplan, 2020; Ezzyat 

et al., 2018; Höhne, Jahanbekam, Bauckhage, Axmacher, & Fell, 2016; Noh, Herzmann, 

Curran, & de Sa, 2014; Noh, Liao, Mollison, Curran, & Sa, 2018). The most common 

Mirjalili et al. Page 3

Neuroimage. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



features that were extracted in these studies included voltage and spectral power, while 

SVM, logistic regression, and LDA were the most common classifiers used. Performance 

varied across these studies but fell in the range of 59.6% to 69.2% accuracy. Most of 

these studies—and classification analyses in general—apply a particular methodology, for 

example logistic regression, power features, etc., without evaluating alternative approaches. 

Consequently, this raises a question about whether the set of features and classifiers chosen 

are optimally suited for classification of memory-related brain states. To address this 

question, some studies have compared different classification methods for distinct cognitive 

states in various domains including episodic memory (Arora et al., 2018) and motor imagery 

(Halme & Parkkonen, 2016; Höller et al., 2013; Tahernezhad-Javazm, Azimirad, & Shoaran, 

2018). However, to the best of our knowledge, no study has directly and systematically 

compared different techniques at every step of classification (i.e., feature extraction, feature 

selection, classifier selection) of cognitive states in order to investigate which set of methods 

is optimal for a specific dataset.

In the current study, we systematically compared different options for every step of 

classification and their associated parameters to investigate which set of methods produces 

optimal performance for decoding successful versus unsuccessful episodic memory brain 

states. We used an EEG dataset that was collected during performance of an episodic 

memory task in adults across the lifespan (Mirjalili, Powell, Strunk, James, & Duarte, 2021). 

We used this dataset for two reasons. First, data were collected from young, middle-aged, 

and older adults which increases the generalizability of our results across different ages. 

Second, this is a rich dataset that enabled us to decode different memory states (i.e., item 

recognition, context recognition), address imbalance between classes (i.e., hits vs. misses), 

and solve binary and multiclass problems. Following the systematic comparison of different 

options for each stage of classification for this dataset, we applied the same procedures to 

three other datasets to assess the robustness and generalizability of our results.

A broader goal of this study was to enable researchers who are interested in performing 

robust and reliable single-trial classification analyses to make informed choices for the 

different stages of the analysis process. We believe that this study’s findings provide 

important insight into how the choice of extracted features, feature selection algorithm, 

and the classifier influence the reliability of predicting memory and other cognitive 

states. Importantly, while our analyses were conducted on an EEG dataset, most of the 

recommendations can also be used for performing classification on datasets that have been 

collected using other neuroimaging techniques such as fMRI. It is also essential to note 

that for each step of classification, while there are other techniques that have been used 

in machine learning research, we selected from those most commonly used in cognitive 

neuroscience research that are also available in analyses toolboxes.

2. Materials and Methods

2.1. Participants

The data included here were collected from individuals who participated in one or 

more previously published EEG studies in our lab (James, Strunk, Arndt, & Duarte, 

2016; Mirjalili et al., 2021; Powell, Strunk, James, Polyn, & Duarte, 2018; Strunk, 
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James, Arndt, & Duarte, 2017). The participants consisted of 65 right-handed adults 

(26 women), ages 18–74. All subjects were native English speakers and had normal or 

corrected vision. Participants were compensated with course credit or $10/hour and were 

recruited from the Georgia Institute of Technology and surrounding community. None of 

the participants reported any psychiatric or neurological disorders, vascular disease, or 

using any medications that affect the central nervous system. Participants completed a 

standardized neurological battery of neuropsychological tests which consists of subtests 

from the memory assessment scale (Williams, 1991), including list learning, verbal span 

forward and backwards, recognition, visual recognition, immediate and delayed recall, 

recall, reproduction, and delayed recognition. Participants were excluded if their scores 

were above or below two standard deviations of the group mean. Furthermore, older adults 

were administered the Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005) to 

test further for mild cognitive impairments. Participants scoring less than 26 on the MoCA 

were excluded. All participants signed consent forms approved by the Georgia Institute of 

Technology Institutional Review Board. Five older participants (61–76 years) were excluded 

in this study: two for noisy EEG (i.e., DC drift, movement), two for not understanding the 

task procedures, and one for computer malfunction.

2.2. Stimuli

Four hundred thirty-two grayscale images of objects were chosen from the Hemera 

Technologies Photo-Object DVDs and Google images. During encoding, 288 of these 

objects were presented. Each grayscale object was presented on the center of the screen 

with white background. Scenes and color squares were presented to the left or right of 

the object. The locations of the context features (i.e., color or scene) were counterbalanced 

across blocks so that they were shown an equal number of times on the left and right across 

subjects. The scenes included color photos of a studio apartment, cityscape, or island. The 

colored squares were green, brown, or red. Each of the context and object pictures spanned 

a maximum vertical and horizontal visual angle of approximately 3°. At retrieval, all 288 

objects were included in the memory test as well as 144 new object images that were not 

shown during encoding. Study and test items were counterbalanced across subjects.

2.3. Experimental task

Figure 1 shows the procedure used at the study and test stages. Prior to the beginning of each 

stage, participants were provided instructions and given 10 trials for practicing. For each 

encoding trial, participants were instructed to pay attention to either the scene or colored 

square, which served as the target context for that trial. For the study stage, participants were 

asked to make a subjective yes/no assessment about the relationship between the object and 

either the colored square (i.e., is this color likely for this object?) or the scene (i.e., is this 

object likely to appear in this scene?).

Within the study phase there were four blocks where each block included four mini-blocks, 

each of which consisted of 18 trials. Before beginning each mini-block, participants were 

provided a prompt (e.g., “Now you will assess how likely the color is for the object” or 

“Now you will assess how likely the scene is for the object”). Since prior evidence has 

found that memory performance in older adults is more disrupted when they have to switch 
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between two different types of tasks (Kray & Lindenberger, 2000), mini-blocks were used 

to orient the participant to which context they should focus on in the upcoming trials. In 

addition, each trial in a mini block had a reminder prompt shown underneath the pictures 

during study trials (see Figure 1).

At the test stage, participants were presented with both old and new objects. Similar to 

the study phase, each object was presented by both a colored square and a scene. For 

each object, the participant initially decided whether it was an old or a new image. If 

the participant detected the object as a new one, the next trial began after 2000 ms. If 

participants stated that it was old, then they were asked to make two additional judgments 

about each context feature and determine their certainty about their assessment (i.e., one 

about the colored square and another about the scene). The order of the second and third 

questions was counterbalanced across participants. For old items, the pairing was set so that 

an equal number of old objects were presented with: (1) both context images matching those 

presented at encoding stage, (2) only the scene matching, (3) only the color matching, and 

(4) neither context images matching. Responses to the context questions were made on a 

scale from 1 (certain match) to 4 (certain mismatch). In total, there were four study and 

four test blocks. Young adults finished all four study blocks before the four test blocks. For 

older adults aged 60 and up, to better equate item memory performance with young adults, 

the memory load was halved so that they finished a two- block study-test cycle twice (two 

study, two test, two study, two test). Both younger and older adults finished a short practice 

of both the study and test blocks prior to beginning the first study block. Consequently, both 

younger and older adults knew of the following memory test.

2.4. EEG recording

Continuous scalp-recorded EEG data was recorded from 32 Ag-AgCl electrodes using 

an ActiveTwo amplifier system (BioSemi, Amsterdam, Netherlands). Electrode position is 

based on the extended 10–20 system (Nuwer et al., 1998). Electrode positions included: 

AF3, AF4, FC1, FC2, FC5, FC6, FP1, FP2, F7, F3, Fz, F4, F8, C3, Cz, C4, CP1, CP2, CP5, 

CP6, P7, PO3, PO4, P3, Pz, P4, P8, T7, T8, O1, Oz, and O2. External left and right mastoid 

electrodes were used for referencing offline. Two additional electrodes recorded horizontal 

electrooculogram (HEOG) at the lateral canthi of the left and right eyes and two electrodes 

placed superior and inferior to the right eye recorded vertical electrooculogram (VEOG). 

The sampling rate of EEG was 1024 Hz with 24-bit resolution without high or low pass 

filtering.

2.5. EEG preprocessing

Offline analysis of the EEG data was conducted in MATLAB 2015b using the EEGLAB 

(Delorme & Makeig, 2004), ERPLAB (Lopez-Calderon & Luck, 2014), and FIELDTRIP 

(Oostenveld, Fries, Maris, & Schoffelen, 2011) toolboxes. The continuous data were down 

sampled to 256 Hz, referenced to the average of the left and right mastoid electrodes, and 

band pass filtered between 0.5 Hz and 125 Hz. The data were then epoched from −1000 

ms prior to stimulus onset to 3000 ms. The time range of interest was −300 ms to 2000 

ms, but a longer time interval is needed to account for signal loss at both ends of the 

epoch during wavelet transformation (i.e., edge effects). Each epoch was baseline corrected 
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to the average of the whole epoch, and an automatic rejection process removed epochs in 

which a blink occurred during stimulus onset or epochs with extreme voltage shifts that 

spanned across two or more electrodes. The automated rejection processes identified epochs 

with the following parameters in the raw data: 1) The voltage range was higher than 99th 

percentile of all epoch voltage ranges within a 400 ms time interval (shifting in 100 ms 

intervals at each epoch). 2) The linear trend slope was larger than the 95th percentile of 

all epoch ranges with a minimum R2 value of 0.3. 3) The voltage range was greater than 

95th percentile of all epoch voltage ranges within a 100 ms time interval (shifting in 25 ms 

intervals across each epoch), between −150 and 150 ms from stimulus onset for frontal and 

eye electrodes only. Subsequently, an independent component analysis (ICA) was run on 

all head electrodes to identify ocular artifacts (i.e., blinks and horizontal eye movements). 

Components related to ocular artifacts were removed from the data by visually scrutinizing 

the topographic component maps and component time course with the ocular electrodes. 

32 ICA components were computed and the mean of the number of components removed 

was 2.43 (SD = 0.722). Each epoch was re-baselined to the −300 to −100 ms time period 

before stimulus onset since the epochs were no longer baselined to a specific time period 

after omitting components related to ocular activity. This was done solely for the purposes 

of visual inspection and identification of additional artifacts in each epoch (e.g., amplifier 

saturation, spiking, extreme values, uncorrected ocular activity), and does not affect the 

frequency decomposition. If a dataset had a noisy electrode (e.g., higher than 30% of the 

data required to be rejected), it was removed from the processing stream and interpolated 

using the nearby channels to estimate the activity within the bad channel before running 

the time frequency procedure (Delorme & Makeig, 2004). After all processing stages, about 

13% (range of 2.1% to 42.7%, SD = 8%) of the epochs were removed on average across 

participants.

Each epoch was transformed into a time frequency representation by Morlet wavelets 

(Percival, Walden, & others, 1993) with 78 linearly spaced frequencies from 3 to 80 Hz, at 

5 cycles. During the wavelet transformation, each epoch was decreased to the time interval 

of interest and down sampled to 50.25 Hz (Cohen, 2014). The average number of trials 

for encoding was 250 (range 181:274, SD = 23.78). For visualization of the data, we show 

some example grand averages in Figure 2. Specifically, for each participant, we averaged the 

voltage across the electrodes of frontal right, frontal left, posterior left, and posterior right 

for item hits and misses separately, and computed grand averages across subjects.

2.6. Summary of the cognitive problems that were investigated in this study

Figure 3 demonstrates a summary of cognitive problems for which we performed 

classification analyses. Although EEG data were recorded during both the encoding and 

retrieval phase of the experiment, we performed the analyses for the encoding period only. 

The reason being that an interesting potential future application of this approach is to 

classify optimal brain states for learning in real time, as discussed in the introduction. 

Furthermore, the goal of this study was not to classify encoding and retrieval brain states 

per se, but to systematically compare different types of extracted features, feature selection 

methods, and choices of classifier for the classification of memory states in the same dataset. 
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Importantly, we only performed classification analysis if all of the classes contained at least 

20 trials for each participant.

In the first analysis, we distinguished the trials where the object was later remembered from 

those where the object was later forgotten. In the second analysis, we performed a four-class 

classification between correct and incorrect color context memory trials associated with 

high or low confidence decisions. Third, we performed three-class classification between 

perception of the three different colors1. We performed these analyses since they allowed 

us to explore the efficiency of the methods for various types of problems in terms of 

the cognitive states of interest, the degree of imbalance between classes, and whether 

the classification problem was a binary or a multi-class problem. All of the classification 

analyses were conducted in MATLAB 2018a on an Apple MacBook Pro (operating system: 

macOS Big Sur 11.5.2 (20G95), processor: 2.3 GHz Dual-Core Intel Core i5, RAM: 8 GB 

2133 MHz LPDDR3).

2.7. Feature extraction

As discussed previously, each epoch of the EEG signals was transformed into time-

frequency representations using Morlet wavelets. Our analysis was based on the time series 

of power values for each frequency band, epoch, and electrode. Numerically, for each trial 

there is a matrix that has the same number of rows as the number of electrodes (N) and 

same number of columns as the number of power samples across the time (T). Importantly, 

for each frequency band, we normalized the power values within all electrodes and time 

points across all the trials for each participant so that the power values have similar ranges 

across different trials and electrodes (A.K. Jain et al., 2000). We found in piloting that 

normalization of power values reduced the running time, especially for logistic regression 

and SVM. We extracted 6768 features using five types of features in this study. These 

features are extracted from the normalized total power—sum of powers within the specific 

frequency band—of different frequency bands including theta (3–7 Hz), alpha (8–12 Hz), 

beta (13–30 Hz), and gamma (35–80 Hz). Specific details of the features are described 

below.

2.7.1. Statistical features—These features include statistical mean, variance, and 

correlation between signals. To be more specific, each trial has a matrix of N × T power 

values for N electrodes and T time samples. In this study, for each electrode, we divided the 

T power samples into nine 400 millisecond time windows with consecutive time windows 

overlapping for 200 ms (i.e., [0 400], [200 600], [400 800], …, [1600 2000] ms) in order 

to reduce processing time (see supplementary material for “The importance of temporal 

resolution of extracted features”). The 400 ms window is similar to ones used in previous 

studies using similar memory designs that showed subsequent memory effects spanning 200 

ms or longer (Morton et al., 2012; Morton & Polyn, 2017). Each 400 ms time window 

consisted of 20 time samples. In addition, while EEG signal has a non-stationary nature (i.e., 

its statistical characteristics change over time), it behaves closer to stationary in the short 

time windows; hence, the extracted features from shorter time windows are more reliable 

1The same analysis for scene perception revealed similar results.
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and useful for classification. For each electrode and time window, the mean and the variance 

of the 20 power values across the 20 time samples within that 400 ms time window for 

each frequency band were extracted. Furthermore, in order to be computationally practical, 

for correlations, we divided the 32 scalp electrodes into four regions, namely frontal right, 

frontal left, posterior right, and posterior left regions. We extracted average power for 

each frequency band across the electrodes for each region. For each pair of regions of 

electrodes of single-trials, Pearson correlation between average power samples from the 

same time window and frequency bands were computed (e.g., correlation between time 

series of average theta power at left frontal with the right posterior region of electrodes in the 

400–800ms time window).

2.7.2. Features based on entropy—Entropy is a measurement of signal’s uncertainty. 

There are several choices for definition of entropy, but we used Shannon entropy, which in 

the discrete form is defined as (Shannon, 1948):

H(x) = − ∑
x

p(x)log2(p(x))

where p(x) denotes the probability density that x occurs. In this study, for each electrode and 

time window, Shannon entropy of the power values was computed for each frequency band.

2.7.3. Phase-based features—The instantaneous phase for each time window and 

frequency band was estimated using the Hilbert Transform. The phase is computed by 

(t) = tan−1 imaginar y(t)
real(t) . To obtain the mean phase for each time window and frequency band 

for each electrode, we projected the phase values across the time window, wrapped them to 

the [0 2π) range of phases, onto the unit circle in the complex plane, and then computed the 

absolute value of the mean phase. Moreover, to calculate the mean phase synchronization 

between each pair of electrode regions within each time window and within each frequency 

band, we first calculated the mean phase for each of the two electrode regions in that pair. 

Subsequently, at each of the time samples within the 400 ms time window, we projected the 

phase differences between the two electrode regions, wrapped them to the [0 2π) range of 

phases, onto the unit circle in the complex plane. Next, we computed the absolute value of 

the mean phase difference between the two signals (Kreuz, 2011; Mardia, 1975; Mormann, 

Lehnertz, David, & E. Elger, 2000).

2.7.4. Model-based features—Estimated parameters of parametric models can be used 

as features in classification problems (Pardey, Roberts, & Tarassenko, 1996). We used the 

commonly used Autoregressive model (AR) (Lotte et al., 2017). In the AR model, the power 

of the signal at each timepoint is considered as a linear combination of the power values of 

the signal at p previous timepoints, in addition to white noise

x(n) = ∑
i = 1

p
αix[n − i] + u[n]
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Where each αi is one of the coefficients or parameters of the model that needs to be 

estimated according to the observed signal. We used p = 4 which is a common value used 

in the EEG literature (Pardey et al., 1996; Sardouie & Shamsollahi, 2012). Subsequently, 

for each region of electrodes and time window, an AR model was fitted to the average time 

series of power values for each frequency band. The obtained model parameters were used 

as features.

2.7.5. Features based on Common Spatial Pattern (CSP)—The CSP algorithm 

tries to increase the separability between classes by learning spatial filters which maximize 

the power of the filtered signal for one class and minimize the power for the other 

class (Ramoser et al., 2000). The average covariance matrices of the trials of each class 

are calculated, creating C1 and C2 for the two classes. Using the concept of eigenvalue 

decomposition, an optimization problem of w = arg max
a

wTC1w
wTC2w

 is solved to obtain the 

optimal spatial filters. The spatial filters optimally project the signals into a new space 

in which the signal at each projected electrode is a linear combination of the signals across 

all original electrodes.

In this study, for each frequency band and time window, CSP filters were computed and then 

applied to the time series of power values across all electrodes. The variances of the filtered 

signals at each projected electrode were used as features.

2.8. Feature Selection

After features have been extracted, a subset can be selected for classification. This step 

is often skipped in cognitive neuroscience studies. However, it is possible that some 

useful information will be missed, and classification performance will be suboptimal. 

Moreover, the machine learning literature strongly supports feature selection for improving 

classification performance and avoiding overfitting (Dias, Jacinto, Mendes, & Correia, 2009; 

Koprinska, 2009; Lotte et al., 2017). There are a few approaches to select the best features, 

but we focus on two of these strategies: filter and wrapper methods, and their combination. 

We compare these selection methods against no feature selection.

2.8.1. Filter Methods—For filter methods, evaluation of features is independent of the 

classification algorithm. Features are evaluated based on their information content, such as 

interclass distance, information-theoretic measures, etc. We focused on Fisher’s criterion 

since it is one of the most common approaches (Gu, Li, & Han, 2011). The Fisher score for 

the feature f can be computed using the following formula:

score(f) =
μ1 − μ 2 + μ2 − μ 2

σ1
2 + σ2

2

where μ1 and σ1
2 represent the average and variance of f for the trials that belong to Class 

1, μ2 and σ2
2 represent the average and variance of f for the trials that belong to Class 2, 

and μ represent the average of f for all trials. Features are then sorted by their scores, and 
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those with highest scores are selected. Regarding the number of features, there is no required 

number. However, a rule of thumb is to use the square root of the number of available trials 

(Hua, Xiong, Lowey, Suh, & Dougherty, 2004). In this study, to be consistent across all 

analyses and participants, we selected the 10 features with the highest Fisher scores.

2.8.2. Wrapper Methods—While the evaluation of individual features is independent 

of the classifier for filter methods, wrapper methods use a pattern classifier that appraises 

feature subsets by their predictive accuracy (rate of recognition on test data) using cross-

validation or statistical resampling (Guyon & Elisseeff, 2003). On approach for selecting 

the optimal subset of features is to exhaustively search through all subsets and pick 

the best performing. However, the number of possible subsets makes exhaustive search 

computationally expensive and impractical. One of the most commonly used strategies to 

overcome this issue, which we applied here, is to apply sequential forward selection (SFS) 

(Guyon & Elisseeff, 2003; Mitchell, 1997). SFS chooses the best single feature according 

to a specific criterion function (five-fold cross validation performance in this study). Next, 

pairs of features and then triplets are chosen from the remaining feature set, and this process 

continues until a subset of predefined number of features are chosen.

2.8.3. Combination of Filter and Wrapper Methods—SFS methods alone can be 

impractical when there are many features to search through. A much faster approach is to 

evaluate the features initially using the filter method, then search through only those that 

have received high scores (Arbabi, Shamsollahi, & Sameni, 2005; Chuang, Ke, & Yang, 

2008; Hameed, Petinrin, Hashi, & Saeed, 2018; Maldonado, Weber, & Famili, 2014). It is 

important to note that the wrapper only considers the Fisher score of the features, and it 

is not provided with any other information about the features (i.e., time windows, types, 

frequencies, electrodes) to identify the best features. In this study, we compared the filter 

approach alone with the combination of filter and wrapper methods and compared both to no 

feature selection. To be consistent across all analyses and participants, and to avoid the risk 

of overfitting and underfitting based on the number of trials, the wrapper searched for the 

best 10 features (~4% of the trials) among the 100 features (~40% of the trials) that had the 

highest Fisher scores (See supplementary material for “Impact of the number of features”).

2.9. Training a Classifier

There are many classifiers that are used in the literature, but we used four of the most 

commonly used classifiers including SVM, logistic regression, LASSO, and naïve Bayes. 

Importantly, for many cognitive problems, there are two classes (e.g., remembered vs. 

forgotten, move left vs. move right) and many classifiers are either specialized or well 

suited for binary classification but can be generalized to perform multiclass classification. 

Additionally, each of these classifiers has advantages and disadvantages that we describe 

below.

Before delving into the descriptions of the classifiers, it is important to note that in many 

classification analyses, the classes have different numbers of trials, and the classifier will 

have a skewed tendency to generate test labels as the class with the majority of the trials. 

Handling the imbalance issue can be done by either under-sampling the class with more 
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trials or over-sampling the class with fewer trials. Since the number of trials in our data is 

relatively low, particularly for forgotten trials, as in most memory studies, we did not use 

under-sampling as it would ignore some information that could be helpful for classification 

(see supplementary material for “Different methods for handling class imbalance”). Instead, 

we used the synthetic minority oversampling technique or “SMOTE” to generate new data 

points by over-sampling the minority class to create synthetic trials (Arora et al., 2018; 

Chakravarty et al., 2020; Chawla, Bowyer, Hall, & Kegelmeyer, 2002). Minority trials were 

created until both classes had the same number of trials for training.

2.9.1. Support Vector Machine (SVM)—SVM tries to separate the trials of each class 

using a linear hyperplane (Burges, 1998). The linear hyperplane should be specified in a way 

that maximizes the distance from the hyperplane to the closest trial from each class. Suppose 

the equation for optimal hyper plane is written as:

wTx + b = 0

where x is a set of points, w is a vector to the hyperplane, and b is the offset term. It can be 

shown that the margin width is equal to:

M = 2
w . w = 2/w

SVM performs well in higher dimensions (i.e., the number of input features is relatively 

high, and it has low risk of overfitting). However, it is slow for larger datasets and does 

not perform well when the data are especially noisy (Roy, Kar, & Das, 2015; Uddin, Khan, 

Hossain, & Moni, 2019; Van Messem, 2020).

2.9.2. Logistic regression—Logistic regression is a modified version of the linear 

regression model that is used for binary classification problems. It squeezes the output of a 

linear equation between 0 and 1 by using the logistic function is defined as:

logistic(x) = 1
1 + e−x

Logistic regression has low risk of overfitting, is simple to implement, its outputs have 

probabilistic interpretations, it can be used for both binary and multiclass classification 

problems, and it can be updated easily after adding new data. Nonetheless, it does not 

perform well on non-linear scenarios, requires more data to achieve stability, and is not 

flexible enough to capture more complicated non-linear relationships between the output 

and the inputs and underperforms when the decision boundary is not linear (Chang, 2020; 

Holdnack, Millis, Larrabee, & Iverson, 2013; Uddin et al., 2019).

2.9.3. LASSO—LASSO is a type of regression that tries to define the output (the class) 

based on a linear combination of the inputs (Tibshirani, 1996):
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min
β

‖y − Xβ‖2 + λ‖β‖1

where y is the output class and the classes are treated as real numbers, X is the input 

vector of the selected features, and ∥β∥1 denotes the nonzero coefficients for the linear 

regression. As a result, the goal is to minimize the mean squared error of the output 

estimation while limiting the number of features that will be used for the output estimation 

by having non-zero weights in the regression. LASSO has low risk of overfitting and can 

be updated easily after adding new data. If features are correlated, LASSO arbitrarily choses 

one and ignores the others. Moreover, it is not flexible enough to capture more complicated 

non-linear relationships between the output and the inputs (Melkumova & Shatskikh, 2017; 

Pereira, Basto, & da Silva, 2016).

2.9.4. Naïve Bayes—This classifier depends on the conditional probability of the 

occurrence of events from each class (Fukunaga, 1990). In mathematical terms:

if p x ∣ C1 > p x ∣ C2  tℎen x ∈ C1
if p x ∣ C1 < p x ∣ C2  tℎen x ∈ C2

where x is a data point, C1 and C2 represent the classes 1 and 2, and p indicates the 

probability.

For classification, an estimation of the probability distribution of each class is needed. 

However, since no information about the true probability distribution and its parameters 

is known, it is assumed that it follows a normal distribution. By assuming a normal 

distribution, the following parameters for class i are defined:

Ai = − 0.5 × Σi−1

bi = Σi−1 × μi

ci = − 0.5 × μiT × Σi−1 × μi − 0.5 × log  Σi + log  Pi

di(x) = xT × Ai × x + biT × x + ci

where Σi and μi are the covariance matrix and the mean vector of the data points that belong 

to class i and Σi
−1 is the inverse matrix of Σi. By the above definitions, it can be inferred that:
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if d1(x) > d2(x) tℎen x ∈ C1
if d1(x) < d2(x) tℎen x ∈ C2

Naïve Bayes is easy and quick to implement, is insensitive to irrelevant features, does not 

require a large amount of training data, and works on non-linear problems. On the other 

hand, it is not a good estimator of the probabilities, it does not improve the posterior 

probabilities iteratively, presence of dependency between features negatively impacts its 

performance, and it assumes the features follow a normal distribution which is not 

necessarily true and can affect its performance (Narisetty, 2020; Rice, 2014; Uddin et al., 

2019; Yeturu, 2020). However, this was not a problem in our dataset as the features followed 

a normal distribution.

2.10. Multiclass Classification and the Generalization Methods

There are many techniques for solving multiclass classification problems. We used two of 

the most commonly used methods.

2.10.1. Classification Based on the Voting Method—This strategy is a 

generalization of binary classification to a multiclass classification problem. In any 

classification analysis, besides assigning labels, the classifier gives a score for each trial 

indicating how certain the classifier is about the associated label. In this study, for the voting 

method, a one against others approach is used. First, the trials of the second and third class 

are combined to create a new merged class, turning the multiclass classification into a binary 

classification problem (i.e., Class 1 vs. Classes 2/3). The same process is repeated for Class 

2 against Classes 1/3, and so on. In this example, each trial receives three labels and three 

sets of scores, and the class to which the highest sum of scores is associated overall will 

be selected as the final label of that trial. Importantly, this method works regardless of the 

number of classes in the multiclass problem. Another common voting method variation is 

to use a one against one approach (Aly, 2005; Bishop, 1995; Chmielnicki & St ąpor, 2016; 

Hsu & Lin, 2002). For an n-class problem (n > 3), it is a more time-consuming approach. 

However, we compared this approach to the one vs. others and performance was similar (see 

supplementary material: “Different voting method approached for multiclass classification”).

2.10.2. Classification Using Binary Decision Trees—While the voting method 

uses the scores of the classification output and maintains all of the candidate labels 

throughout generalization, the binary decision tree method reduces the candidate labels 

throughout generalization. To elaborate, a binary classification is performed at each node 

of the tree. At each new node, the groups (if they consist of more than one class) are 

partitioned into two subgroups and the classification is performed again. The same process 

is repeated until each leaf of the tree represents a single class. While the partitioning can 

be done arbitrarily at each node of the tree, we used an algorithm that first performs 

binary classification on each pair of classes and then outputs the partition with the highest 

performance (Mirjalili, Sardouie, & Samiee, 2019). We used this approach in this study. This 

algorithm can be used for any multiclass problem regardless of how many classes they have.
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Code and data accessibility: The custom code that we used in this study, the 

data and results that support the findings of this study are available from https://

doi.org/10.17605/OSF.IO/GYFPA. Moreover, the EEG and MEG working memory 

and motor imagery datasets that we used for assessing the generalizability 

of the methods are available from Collaborative Research in Computational 

Neuroscience (CRCNS) data sharing (http://crcns.org/data-sets/pfc/pfc-5/about-pfc-5), 

Human Connectome Project (https://www.humanconnectome.org/study/hcp-young-adult/

document/500-subjects-data-release), and Berlin Brain-Computer Interface websites (http://

www.bbci.de/competition/iv/desc_1.html) respectively.

To summarize, for each time segment, frequency band, and electrode we extracted several 

types of features: mean power, mean variance, mean entropy, and mean instantaneous phase. 

Phase synchronies, correlations between the 4 regions of electrodes, AR coefficients at each 

of the 4 regions, and CSP-based features—32 variances at 32 electrodes after applying the 

spatial filters, for 6768 total features. A summary of the methods that we used are shown in 

Figure 4.

3. Results

3.1. Binary Classification

3.1.1. Binary Classification of Subsequent Item Memory Performance—In this 

problem, we were interested in classifying the trials at encoding based on the subsequent 

memory for the objects (i.e., item hits vs item misses). The summary of the results can be 

found in Figure 5.

To statistically compare feature selection methods and classifiers, we ran a Feature selection 

(filter, filter + wrapper, no selection) × Classifier (LASSO, logistic regression, naïve Bayes, 

and SVM) ANCOVA for both balanced accuracy (see supplementary material: “Measures 

Used to Assess a Classifier’s Performance”) and running time with age as a covariate. For 

balanced accuracy, significant main effects of Feature selection [F(2, 707) = 1802.02, p < 

0.001, ηp2 = 0.836] and Classifier [F(3, 707) = 6.53, p < 0.001, ηp2 = 0.027] and the interaction 

[F(6, 707) = 4.01, p < 0.001, ηp2 = 0.033] were observed, after controlling for Age, which was 

not a significant predictor [F(1, 707) = 2.33, p = 0.127, ηp2 = 0.003], Follow-up t-tests showed 

that the filter + wrapper selection method outperformed the other two selection methods 

[all ts > 19.54, ps < 0.001], and filter alone outperformed no selection [all ts > 2.16, ps < 

0.018] for all classifiers. Moreover, as can be seen in Figure 5a, LASSO outperformed others 

for the filter + wrapper method [all ts > 3.15, ps < 0.002]. For the filter method, LASSO 

outperformed others [all ts > 2.13, ps < 0.019] except SVM [t(59) = 0.56, p = 0.288]. Lastly, 

for no selection, logistic regression outperformed others [all ts > 4.46, ps < 0.007] except 

SVM [t(59) = 1.60, p = 0.058].

For running time, main effects of Feature selection [F(2, 707) = 243.52, p < 0.001, 

ηp2 = 0.408] and Classifier [F(3, 707) = 51.27, p < 0.001, ηp2 = 0.179] and the interaction 

[F(6, 707) = 29.13, p < 0.001, ηp2 = 0.198] were all significant after controlling for Age, 

which was not a significant predictor [F(1, 707) = 3.22, p = 0.073, ηp2 = 0.005], Follow-up 
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t-tests confirmed that the filter selection method was faster than the other two methods [all ts 

> 7.33, ps < 0.001] while no selection was faster than the filter + wrapper [all ts > 7.99, ps < 

0.001] for all classifiers. As can be seen in Figure 5b, naïve Bayes was faster than the others 

for the filter + wrapper method [all ts > 1.75, ps < 0.043]. For the filter method, SVM was 

faster than the others [all ts > 4.50, ps < 0.001] except naïve Bayes [t(59) = 1.29, p = 0.101]. 

For no selection, SVM was faster than the others [all ts > 8.88, ps < 0.001].

Lastly, as predicted, after controlling for age, classifier performance was positively 

predictive of item d-prime [ρ(57) = 0.345, p = 0.007]. For this analysis, we computed the 

partial Pearson correlation between item d-prime and the highest-performing classification 

method (using LASSO when the effective features are selected using the filter + wrapper 

method) while controlling for age.

3.2. Multiclass Classification

3.2.1. Four-Class Classification of Subsequent Context Memory Performance
—We used two approaches to generalize a binary classification problem into a multiclass 

problem—namely the voting method and the binary decision trees. Since the previous 

results showed that selecting the effective features using the combination of filter and 

wrapper methods led to the highest performances, we used that approach for this problem 

(see supplementary material for “Comparison of feature selection methods in multiclass 

classification”). We then used both generalization strategies for all four classifiers.

In this problem, we were interested in classifying all four different types of color context 

memory states including correct with high confidence, correct with low confidence, 

incorrect with low confidence, and incorrect with high confidence. One important thing 

to keep in mind is that there were only 29 participants who had more than 20 trials for each 

of these four classes and we performed the classification only for these participants. The 

summary of the results can be found in Figures 6a and 6b.

To statistically compare generalization methods and classifiers, we ran a Generalization 

(voting, binary decision tree) × Classifier (LASSO, logistic regression, naïve Bayes, and 

SVM) ANCOVA for both balanced accuracy and running time with age as a covariate. 

For balanced accuracy, significant main effects of Generalization [F(1, 223) = 14.57, p < 

0.001, ηp2 = 0.061] and Classifier [F(3, 223) = 7.47, p < 0.001, ηp2 = 0.091] were observed after 

controlling for Age, which was a significant predictor of accuracy and it was associated with 

lower accuracy [F(1, 223) = 8.05, p < 0.001, ηp2 = 0.035]. The interaction was not significant 

[F(3, 223) = 0.80, p = 0.480, ηp2 = 0.011]. As can be seen in Figure 6a, generalization 

using the binary decision tree outperformed the voting method. Moreover, follow-up t-tests 

showed that LASSO outperformed the other classifiers [all ts > 3.21, ps < 0.002] except 

logistic regression [t(28) = 1.20, p = 0.119].

For running time, main effects of generalization [F(1, 223) = 244.87, p < 0.001, ηp2 = 0.523] 

and classifier [F(3, 223) = 110.01, p < 0.001, ηp2 = 0.597] and the interaction [F(3, 223) = 

22.33, p < 0.001, ηp2 = 0.231] were all significant after controlling for Age, which was not 
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[F(1, 223) = 2.85, p = 0.093, ηp2 = 0.013],. Follow-up t-tests indicated that the binary decision 

tree generalization method was faster than the voting method for all classifiers [all ts > 

11.04, ps < 0.001]. As can be seen in Figure 6b, naïve Bayes was faster than the other 

classifiers [all ts > 5.11, ps < 0.001].

Lastly, classifier performance was not a significant predictor of context d-prime [ρ(26) = 

−0.172, p = 0.382]. For this analysis, we computed the partial Pearson correlation between 

context d-prime and the highest-performing classification method (using LASSO when the 

binary decision tree generalization method was used) while controlling for age.

3.2.2. Three-Class Classification of Context Perception—In this problem, we 

were interested in classifying the trials based on the color context that the participant 

perceived during encoding (i.e., red vs. green vs. brown). We used only the trials where the 

object was correctly identified as old, and the color context was correctly identified. The 

results are shown in Figures 6c and 6d2.

In order to statistically compare generalization methods and classifiers, we ran a 

Generalization (voting, binary decision tree) × Classifier (LASSO, logistic regression, naïve 

Bayes, and SVM) ANCOVA for balanced accuracy, controlling for Age. For balanced 

accuracy, significant main effects of Generalization [F(1, 471) = 8.96, p = 0.003, ηp2 = 0.019] 

and Classifier [F(3, 471) = 12.13, p < 0.001, ηp2 = 0.072] were observed after controlling for 

Age, which was a significant negative predictor of accuracy [F(1, 471) = 11.08, p < 0.001, 

ηp2 = 0.023]. The interaction was not significant [F(3, 471) = 0.75, p = 0.524, ηp2 = 0.005]. 

As can be seen in Figure 6c, generalization using the binary decision tree outperformed 

the voting method. Moreover, follow-up t-tests showed that LASSO outperformed the other 

classifiers [all ts > 5.08, ps < 0.001].

For running time, main effects of generalization [F(1, 471) = 311.22, p < 0.001, ηp2 = 0.398], 

classifier [F(3, 471) = 320.30, p < 0.001, ηp2 = 0.671], as well as the interaction [F(3, 471) 

= 15.43, p < 0.001, ηp2 = 0.089] were all significant after controlling for Age which was 

associated with higher running time [F(1, 471) = 4.88, p = 0.028, ηp2 = 0.010], Follow-up t-

tests to elucidate the source of interaction showed that the binary decision tree generalization 

method was faster than the voting method for all classifiers [all ts > 9.82, ps < 0.001]. As 

can be seen in Figure 6d, naïve Bayes was faster than the other classifiers for the binary 

decision tree [all ts > 6.32, ps < 0.029] and voting method [all ts > 19.39, ps < 0.001].

3.3. Testing the generalizability of the methodology

The above analyses showed that the optimal classification procedure, considering both 

performance and running time, was obtained by first extracting a diverse feature space, 

filtering a subset of top performing features, and passing them to the wrapper for feature 

selection. While the classifiers performed similarly, LASSO tended to outperform the others 

by a small margin—by at least 5.8%-points compared to the other classifiers—, and naïve 

2Similar results were obtained from the classification analyses for scenes (i.e., studio apartment, cityscape, or island).
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Bayes tended to be fastest—other classifiers had at least 7.1% increase (0.17 sec/trial) in 

processing time. However, it is essential to verify that this approach works well for other 

classification problems and datasets in order to establish its generalizability. To this end, 

we performed similar analyses for new datasets from different cognitive domains: an EEG 

working memory dataset collected from patients with frontal lobe injury and age-matched 

controls; a motor imagery EEG dataset, and an MEG working memory dataset (see Code 

and data accessibility in Materials and Methods). We believe that diversity in terms of the 

signal type, cognitive domain, data dimensionality, and the healthiness of the participants’ 

brains could be substantially supportive of the generalizability of our findings.

In the EEG working memory study, participants were asked to encode two colored shapes 

and following a short delay, asked to make shape identity, spatial location, and temporal 

order discriminations about shape probes (Johnson et al., 2017). EEG data were collected in 

this study across 64 electrodes from 14 patients with focal prefrontal cortex damage and 20 

aged-matched controls, ranging in age from 30–62. Although there were additional subjects 

in this study, we only used the data from those (i.e., 12 patients and seven controls) with at 

least 20 trials in each condition/class. We were interested in classifying the trials in which 

the participant had responded correctly versus incorrectly across identity, spatial location, 

or temporal order discriminations. The summary of the classification accuracy and running 

time results can be found in Figure 7.

To statistically compare feature selection methods and classifiers, we ran a Feature selection 

(filter, filter + wrapper, no selection) × Classifier (LASSO, logistic regression, naïve Bayes, 

and SVM) ANOVA for both balanced accuracy and running time. For balanced accuracy, 

significant main effects of feature selection [F(2, 216) = 1071.70, p < 0.001, ηp2 = 0.908] and 

classifier [F(3, 216) = 6.43, p < 0.001, ηp2 = 0.082] were observed. However, the interaction 

[F(6, 216) = 1.47, p = 0.191, ηp2 = 0.039] was not significant. Follow-up t-tests showed that 

the filter + wrapper selection method outperformed the other two selection methods [all ts > 

18.15, ps < 0.001] while filter alone outperformed no selection [t(18) = 30.89, ps = 0.003]. 

Moreover, as can be seen in Figure 7a, LASSO outperformed the other classifiers [all ts > 

3.16, ps < 0.003].

For running time, main effects of feature selection [F(2, 216) = 84.93, p < 0.001, ηp2 = 0.440], 

classifier [F(3, 216) = 17.69, p < 0.001, ηp2 = 0.197], and the interaction [F(6, 216) = 14.70, p 

< 0.001, ηp2 = 0.290] were all significant. Follow-up t-tests confirmed that the filter selection 

method was faster than the other two methods [all ts > 3.93, ps < 0.001] while no selection 

was faster than the filter + wrapper [all ts > 3.92, ps < 0.001] for all classifiers. As can be 

seen in Figure 7b, naïve Bayes was faster than the others for the filter + wrapper method [all 

ts > 3.06, ps < 0.004]. For the filter method, SVM was faster than the others [all ts > 8.49, 

ps < 0.001] except naïve Bayes [t(18) = 1.55, p = 0.070]. Lastly, for no selection, SVM was 

faster than the others [all ts > 9.19, ps < 0.001].

In the second analysis, we performed classification on data collected during performance 

of a motor imagery task in which participants had to imagine moving their left hand or 

their right hand (Blankertz, Dornhege, Krauledat, Müller, & Curio, 2007). EEG data were 
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collected in this study across 59 electrodes from seven healthy adults aged 26 to 46. We 

classified right hand movement versus left hand movement trials. We repeated the same 

procedure that we did for the previous analysis and the summary of the results can be found 

in Figure 8.

A Feature selection (filter, filter + wrapper, no selection) × Classifier (LASSO, logistic 

regression, naïve Bayes, and SVM) ANOVA for balanced accuracy showed significant 

main effects of feature selection [F(2, 72) = 30.85, p < 0.001, ηp2 = 0.462] and classifier 

[F(3, 72) = 7.08, p < 0.001, ηp2 = 0.228] but no significant interaction [F(6, 72) = 0.36, p 

= 0.904, ηp2 = 0.029]. Follow-up t-tests showed that the filter + wrapper selection method 

outperformed the other two methods [all ts > 12.15, ps < 0.001] while there was no 

difference between the filter alone and no selection [t(6) = 1.57, ps = 0.084]. Moreover, as 

can be seen in Figure 8a, LASSO outperformed SVM [t(6) = 3.28, p = 0.008] but did not 

outperform other two classifiers [all ts < 1.56, ps > 0.085].

For running time, main effects of feature selection [F(2, 72) = 31.07, p = 0.001, ηp2 = 0.463] 

and classifier [F(3, 72) = 11.65, p < 0.001, ηp2 = 0.327] and the interaction [F(6, 72) = 9.35, p 

< 0.001, ηp2 = 0.438] were all significant. Follow-up t-tests confirmed that the filter selection 

method was faster than the other two methods [all ts > 2.90, ps < 0.014] while no selection 

was faster than the filter + wrapper [all ts > 3.58, ps < 0.006] for all classifiers. As can be 

seen in Figure 8b, naïve Bayes was faster than the others for the filter + wrapper method [all 

ts > 3.46, ps < 0.007] except SVM [t(6) = 1.03, p = 0.172]. For the filter method, SVM was 

faster than the others [all ts > 4.04, ps < 0.001] except naïve Bayes [t(6) = 1.34, p = 0.114]. 

Lastly, for no selection, SVM was faster than the others [all ts > 6.33, ps < 0.001].

In the third analysis, we used the Human Connectome Project dataset (Larson-Prior et al., 

2013). We performed classification on MEG signals recorded during a working memory task 

with alternating 0-back and 2-back conditions in which participants were presented with 

pictures of tools or faces. MEG data were collected in this study across 248 electrodes from 

83 healthy adults aged 22 to 35. We classified correct responses versus incorrect responses. 

We repeated the same procedure that we did for the previous analyses and the summary of 

the results can be found in Figure 9.

A Feature selection (filter, filter + wrapper, no selection) × Classifier (LASSO, logistic 

regression, naïve Bayes, and SVM) ANOVA for balanced accuracy showed significant main 

effects of feature selection [F(2, 984) = 1099.58, p < 0.001, ηp2 = 0.691] and classifier 

[F(3, 984) = 2.82, p = 0.038, ηp2 = 0.009] and the interaction [F(6, 984) = 8.91, p < 

0.001, ηp2 = 0.052]. Follow-up t-tests showed that the filter + wrapper selection method 

outperformed the other two methods [all ts > 12.54, ps < 0.001], and filter alone 

outperformed no selection [all ts > 3.08, ps < 0.002] for all classifiers except LASSO [t(82) 

= 1.63, p = 0.053]. Moreover, as can be seen in Figure 9a, LASSO outperformed the other 

classifiers for the filter + wrapper method [all ts > 4.43, ps < 0.001] except SVM [t(82) = 

1.00, p = 0.160]. For the filter method, naïve Bayes outperformed others [all ts > 5.05, ps < 

Mirjalili et al. Page 19

Neuroimage. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.001]. Lastly, for no selection, logistic regression outperformed others [all ts > 2.52, ps < 

0.007].

For running time, main effects of feature selection [F(2, 984) = 1026.26, p < 0.001, 

ηp2 = 0.676] and classifier [F(3, 984) = 375.71, p < 0.001, ηp2 = 0.534] and the interaction 

[F(6, 984) = 254.94, p < 0.001, ηp2 = 0.609] were all significant. Follow-up t-tests confirmed 

that the filter selection method was faster than the other two methods [all ts > 17.86, ps < 

0.001] while no selection was faster than the filter + wrapper [all ts > 21.57, ps < 0.001] for 

all classifiers. As can be seen in Figure 9b, naïve Bayes was faster than the others for the 

filter + wrapper method and the filter method alone [all ts > 6.73, ps < 0.001]. Lastly, for 

no selection, naïve Bayes was faster than the others [all ts > 5.38, ps < 0.001] except SVM 

[t(82) = 0.84, p = 0.203].

It is important to note that performance for the MEG dataset was generally lower than was 

performance for the EEG working memory dataset, although both datasets were collected 

from working memory tasks. Some of the potential reasons include the potential differences 

in the sensitivity of MEG and EEG to certain neural signals, or the differences in MEG 

and EEG measurement and/or preprocessing, as well as the differences in the paradigms 

used in the two datasets. However, a potential mathematical reason for this difference is 

related to the number of features the wrapper has considered compared to the overall feature 

space. Specifically, for the sake of running time, the wrapper considered only 100 features 

for finding the optimal feature set for each analysis. While 100 features are about 6% 

of the total extracted features for the EEG working memory dataset, they are only about 

2% of the total extracted features for the MEG working memory dataset due to the MEG 

recording having more channels. As a result, this could potentially impact the classification 

performance for the MEG dataset as it could not explore more features because of running 

time (See supplementary material for “Impact of the number of features”).

3.4. Systematic comparison of feature types

For each problem, we investigated how frequently each feature type was selected by feature 

selection algorithms across all subjects. Supplementary Tables 1–4 provide a summary 

of how frequently different feature types, time windows, frequency bands, and electrode 

regions were selected in the feature selection process across subjects and different analyses. 

These tables indicate that CSP features were selected more than other types of features while 

features from delta frequency band were selected more often than other frequency bands. 

It is important to note that just because a particular type of feature has been selected more 

frequently than another, it does not necessarily indicate that it yields better classification 

performance. For example, features that are efficient for classification but fail to be in the 

top X% will not pass the Fisher criterion for being passed to the classifier. To address this 

issue, each classifier was provided with only a specific type of feature (e.g., only entropy 

features or only CSP-based features, etc.) and classification performances were compared. 

The result of these comparisons is shown in Table 1. These results are obtained by using the 

combination of filter and wrapper methods to select the effective features and then training 

naïve Bayes classifiers on all subjects in all analyses. We repeated the process for other 

methods for only 10 subjects (it was not practical to repeat them for all subjects because 
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of high computational complexity) and the patterns were similar to naïve Bayes, hence we 

have not shown them in the table. The Feature type (CSP-based, mean, variance, entropy, 

AR coefficients, correlations, phase, phase synchrony, and multiple types together) ANOVAs 

indicated that there is a significant difference between the performances of different feature 

types [item memory : F(8, 531) = 30.21, p < 0.001, ηp2 = 0.231, context decoding: F(8, 252) = 

18.47, p < 0.001, ηp2 = 0.218, context memory: F(8, 252) = 13.64, p < 0.001, ηp2 = 0.302, EEG 

working memory: F(8, 162) = 3.20, p = 0.002, ηp2 = 0.136, motor imagery: F(8, 54) = 21.21, 

p < 0.001, ηp2 = 0.759, MEG working memory: F(8, 738) = 19.06, p < 0.001, ηp2 = 0.171]. 

Moreover, extracting multiple types of features outperformed extracting only an individual 

type of feature for all feature types in all analyses [item memory : all ts > 3.86, ps < 0.004)] 

context decoding: all ts > 3.10, ps < 0.002), context memory: all ts > 3.74, ps < 0.002), EEG 

working memory: all ts > 2.11, ps < 0.025), motor imagery: all ts > 2.90, ps < 0.014), MEG 

working memory: all ts > 6.34, ps < 0.001)].

4. Discussion

In everyday life, even a person with no clinically significant memory impairment shows 

episodic memory failures such as forgetting where they parked their car. Using fMRI and 

EEG, cognitive neuroscientists have been examining the neural foundations of these kinds of 

memory failures, and successes, with various approaches. While it is common to use ERPs 

or average BOLD signals to discriminate neural activity associated with successful versus 

unsuccessful memory performance, averaging approaches do not allow us to explore single 

events. Classification of brain states associated with single events using real-time signals 

recorded from the scalp offers the potential for development of real-time interventions to 

support everyday learning. Although some studies have performed single trial classification 

of different memory states, performance has arguably been insufficient for developing an 

effective intervention system. To address this problem, in this study, for the first time, 

we systematically compared different methods for each step of classification for the same 

dataset collected from an adult lifespan sample to examine which combination of methods 

offers the best performance. This study has several novel aspects. Specifically, we inspected 

different methods at all steps of classification for various episodic memory and visual 

perception cognitive problems with different numbers of classes and levels of imbalance on 

an adult lifespan dataset. Moreover, we investigated the generalizability of our findings by 

applying our methods on three other datasets from working memory and motor imagery 

domains. Our results suggest that no particular feature type outperforms others consistently, 

and it is important to extract multiple types of features to have an optimal performance as 

the ANOVAs in the beginning of the Results section showed. Moreover, the combination of 

the wrapper and filter methods outperformed the filter method, and both outperformed no 

feature selection method. Additionally, although different classifiers performed at a similar 

level, LASSO was consistently the highest performing while naïve Bayes was the fastest 

classifier. Lastly, for multiclass classification, the best strategy to generalize the binary 

classification is to use binary decision trees. We elaborate on these results below.
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4.1. Recommendations for Future Studies

Researchers who want to optimize their classification performance can leverage the 

current results to make informed decisions regarding the specific feature extraction, feature 

selection, and classification methods to select for their problem of interest. Here, we have 

provided the answers to a list of likely questions that a researcher will need to answer 

before performing classification analyses. It is worth mentioning that while we make these 

recommendations for EEG/MEG datasets, some of the principles, particularly the ones 

derived mathematically and independent of the type of the investigated time series, may 

apply to other kinds of data, including fMRI. Specifically, the recommendations regarding 

feature extraction, feature selection, imbalance handling, and number of features to search 

through and select may apply to fMRI as well.

4.1.1. What type(s) of features should I extract?—Regarding the features that 

one should extract, it is highly recommended to extract as many types of feature as 

possible (al-Qerem, Kharbat, Nashwan, Ashraf, & blaou, 2020). Importantly, we cannot 

recommend a particular type of feature for the researcher to extract as no feature type 

stood out in our systematic analyses for each cognitive problem. However, we did find 

that extracting many types of features outperformed extracting only one feature type. Each 

cognitive problem likely reflects a particular combination of neural activities and different 

feature types might hold different levels of importance for that particular problem. While 

extracting many types of features (i.e., entropy, phase synchronization, correlation, CSP-

based features, etc.) outperformed extracting any specific feature (see Table 1), one might 

wonder why one would use only a specific type of feature or a specific set of features 

in their study. A researcher might be interested in features that are an inherent property 

of the brain, so the findings can be more directly related to this property. For example, 

Höhne et al., 2016 used both oscillatory EEG phase and power information and compared 

their associated performances; researchers found that classification using phase features 

outperformed that using power features. These results allowed the researchers to endorse 

the functional relevance of phase for long-term memory operations and recommended that 

phase information might be utilized for memory enhancement applications that use deep 

brain stimulation. It is also possible that some features might be particularly diagnostic 

for classifying disease states. For example, one might want to use classification analyses 

to identify Alzheimer’s pathology or to assess progression of the disease. EEG, being 

non-invasive, inexpensive, and widely available in clinical settings, holds potential for 

diagnosis of Alzheimer’s disease (Vecchio et al., 2013). Some evidence shows that entropy 

is altered by Alzheimer’s disease and is able to distinguish patients from healthy controls 

(Nobukawa et al., 2020). Of course, it remains possible that extraction of additional features 

could produce better classification performance. Thus, the choice of features to extract 

may depend upon the purpose of the researcher’s classification problem but as we have 

shown here, multiple feature extraction may prove superior for classifying several types of 

cognitive problems.

4.1.2. How should I select the features that I want to use to train the 
classifier?—While it is crucial to get as much information as possible from each trial 

by extracting several types of features across time, frequency bands, and electrodes, not all 
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the extracted features will necessarily be useful for classification. There are two commonly 

used techniques for finding the effective features for classification—namely, filtering and 

wrapper methods while an alternative and control method would be to not perform feature 

selection at all. Filtering methods are fast since they involve a non-iterative computation on 

the dataset which execute faster than training a classifier. Moreover, since the filter methods 

evaluate the intrinsic characteristics of the features, rather than their interaction with a 

specific classifier, they will produce performance that is more similar across classifiers than 

the wrapper method (as can be seen in Figures 5 and 7–9). By contrast, wrapper methods 

generally achieve higher performance than filter methods, but performance is dependent 

upon interactions between the classifier and the subset of features. Moreover, the fact 

that the wrapper method evaluates several different sets of features by directly training 

the classifier using those features explains its slower execution (Mitchell, 1997). If the 

number of extracted features is high, it will be impractical to pass all of the features to the 

wrapper; it would be wise to apply wrapper methods on a smaller set of features by first 

using filter methods to score individual features, then picking those with the highest scores 

to pass to the wrapper (see Supplementary Figure 1). With these issues in mind, for the 

classification problems for which accuracy is the most important factor, wrapper methods 

such as sequential forward selection should be used to select the most effective features 

(Dias, Kamrunnahar, Mendes, Schiff, & Correia, 2010; Kirar & Agrawal, 2018; Zhang, Gan, 

& Wang, 2015). In the current analyses, on average, selecting the effective features using 

the combination of filter and wrapper methods resulted in 36.1%-points balanced accuracy 

improvement with a 173.2% increase (1.55 sec/trial) in processing time compared to the 

filter method alone. Moreover, the filter method alone resulted in 5.8%-points balanced 

accuracy improvement with a 0.4% decrease (2 ms/trial) in processing time compared to no 

feature selection at all (see Figures 5 and 7–9).

4.1.3. Which classifier should I use?—An important point of emphasis is that all 

the classifiers commonly used in the literature perform relatively well; otherwise, they 

would not be used in those studies. As mentioned previously, each of these classifiers uses 

a particular and unique strategy to distinguish the data points and has its strengths and 

weaknesses. Specifically, all of the classifiers performed similarly, although there were some 

minor differences in their achieved accuracy. It is fair to say that the choice of classifier 

may not be as determinant as other factors in terms of the performance. In this study, in 

terms of balanced accuracy, we found that on average across the classification problems, 

LASSO outperformed logistic regression by 4.1%-points, logistic regression outperformed 

naïve Bayes by 2.2%-points, and naïve Bayes outperformed SVM by 0.2%-points. One 

advantage of LASSO is the way it optimizes the problem by potentially removing some of 

the selected features during training and testing the model’s performance (i.e., mean squared 

error) of different combinations and sizes of feature sets. While this adds to the running 

time, it can improve classification performance relative to other classifiers by potentially 

having a simpler and more efficient model.

However, if a researcher is highly concerned about the running time, as can be seen 

in Figures 5–9, naïve Bayes would be the best choice as it is remarkably faster than 

the other classifiers, and it performs closely to the highest performing classifiers (i.e., 
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LASSO and then logistic regression). In this study, we found that on average across the 

cognitive classification problems, SVM had 14.8% increase (0.29 sec/trial) in processing 

time compared to naïve Bayes, LASSO had 30.7% increase (0.69 sec/trial) in processing 

time compared to SVM, and logistic regression had 45.7% increase (1.34 sec/trial) in 

processing time compared to LASSO. The parameters of the naïve Bayes model including 

a priori and conditional probabilities are learned using a deterministic set of steps. These 

steps involve only counting and dividing which are trivial operations. Moreover, as we 

mentioned above, naïve Bayes does not perform an optimization of a cost equation involved 

in training the model and does not solve any matrix equations which are procedures that 

can be computationally costly (Fukunaga, 1990), as can be seen for LASSO and logistic 

regression. On the contrary, logistic regression requires more data to reach stability, and for 

some participants with lower numbers of trials, execution of its training is slow (as can be 

seen in Figures 5–9).

4.1.4. What if the number of trials is not the same across different classes?
—It is important to handle the imbalance issue to prevent the classifier from having 

any skewed tendency to label the test data as the overrepresented class. While there are 

different strategies such as under-sampling (e.g., bootstrap aggregation or “bagging”) and 

over-sampling (e.g., SMOTE) to handle the imbalance issue, we recommend using the 

SMOTE technique to train the classifier with an equal number of trials from each class. As 

can be seen in Supplementary Figure 2, we found that on average across different classifiers, 

SMOTE outperformed the approach in which we did not handle the imbalance issue by 

10.5%-points in terms of balanced accuracy. Interestingly, not handling the imbalance 

outperformed the bagging method by 7.7%-point. In terms of running time, the SMOTE 

method had 26.7% increase (0.42 sec/trial), and the bagging method had 531.9% increase 

(9.38 sec/trial) in processing time compared to not handling the imbalance. Although 

SMOTE adds a computation cost to the analyses, the improvement that it will have in 

terms of performance and removing any imbalance during the training stage of the classifier 

is arguably worth the extra computation cost.

4.1.5. How many features should I search through and how many features 
should I select?—Two important parameters that one needs to determine are the number 

of features to include in the feature space for the wrapper after filtering and the number 

of top-performing features that one should select to properly train the classifier. These 

choices likely depend on the problem, how many trials are available, the level of noise 

in the dataset, and one’s tolerance of the running/computing time. It is recommended to 

plot a figure like Supplementary Figure 1 to understand how much performance would 

change as a function of these two parameters. As can be seen in the figure, performance 

increases as more features are provided to the wrapper and then plateaus. On the other hand, 

performance increases when increasing the number of selected features, plateaus, and then 

begins to decrease due to overfitting. Moreover, the running time increases linearly when 

providing more features to the wrapper or increasing the number of selected features. The 

cutoff point will change based on the problem and researcher’s preference and represents a 

potential trade-off between performance and running time. Specifically, there is not a unique 

cutoff point on which all researchers would agree in determining these two parameters. For 

Mirjalili et al. Page 24

Neuroimage. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



example, if running time is not a concern for the researcher, they might decide to pass more 

features to the wrapper to reach even a slightly higher performance compared to the point 

in which the plot is starting to plateau. As the specific number of features and running 

time will likely differ between studies, we recommend researchers examine figures like 

Supplementary Figure 1 to make informed determinations regarding feature number.

4.1.6. What if I am interested in classifying more than two cognitive 
conditions?—To classify more than two classes, the problem must be broken into multiple 

binary classification problems. While there are several approaches to doing so, the efficient 

way—in terms of both running time and performance—is to use binary decision trees 

to generalize the binary problem into a multiclass one. While binary decision trees have 

been frequently used for this purpose (Fei & Liu, 2006; Freeman, Kuli, & Basir, 2013; 

Mao, Zhou, Pi, Sun, & Wong, 2005), in this study, we also found that they outperform 

the voting method which is also commonly used in the literature (Khan, Bhatti, Khan, 

& Iqbal, 2019; Krishna, Pasha, & Savithri, 2016; Mahmoudi & Shamsi, 2018; Venate & 

Sunny, 2016). Specifically, on average, generalizing a binary classification problem into 

a multiclass problem using binary decision trees resulted in 4.5%-point improvement in 

balanced accuracy and 32.5% decrease (1.04 sec/trial) in processing time compared to 

generalizing using the voting method as can be seen in Figure 6. For binary decision trees, 

the executions are faster as fewer classification analyses are conducted, and when the results 

of the binary problems are combined to produce the final label, binary decision trees will 

have better performance as the errors of the binary problems will be accumulated to some 

degree to generate the final labels (Fei & Liu, 2006).

4.2. Impact of aging on classification performance

It is important to note that chronological age did not influence classification performance 

for the item memory (i.e., item hit vs. miss) classifier, consistent with the behavioral results 

showing relatively spared item memory discriminability across age [the relationship between 

age and item memory: ρ(58) = −0.144, p = 0.273]. By contrast, age had a significant 

negative effect on 4-class context memory decoding, which again fit behavioral performance 

for context memory d-prime [the relationship between age and context memory: ρ(58) 

= −0.412, p = 0.001]. Finally, age had a significant negative effect on 3-class context 

perception classifier. While we did not explicitly measure visual perception performance 

in our memory study, many previous studies have shown perceptual processing deficits 

in normal aging (Monge & Madden, 2016; Roberts & Allen, 2016). Importantly, despite 

age-related reductions in the level classification accuracy, the patterns of results for 

feature extraction, feature selection, and classifier selection were age-invariant. Thus, the 

recommendations we offer here apply to participants across the adult lifespan.

4.3. Limitations of this study

The results of this study should be interpreted in the context of some limitations. 

First, despite the richness of the selected dataset, which allowed us to perform multiple 

classification analyses, it lacks simplicity that could have allowed for higher classification 

performance. That is, for each trial, participants were asked to pay attention to multiple 

pieces of information including objects, scene and color contexts, and their relationships. 
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Consequently, brain activity likely reflects multiple, complex cognitive operations. However, 

by validating our methodological approach on two orthogonal datasets including one 

collected from a very simple motor imagery design, we have shown that our approach works 

well regardless of the complexity of the task or cognitive domain.

Although we assessed feature types, feature selection methods, and classifiers that have 

commonly been used in cognitive neuroscience studies, there are many other choices, and 

it would be worth investigating them in future studies. Lastly, it is important to note that 

performances in this study are not necessarily the best that could be achieved. That is, we 

determined the parameters such as the number of features passed to the wrapper and the 

number of features the wrapper selects according to the trade-off between running time 

and performance. Although this is the approach most researchers would likely take, by 

sacrificing the running time or using super computers, it could be possible to reach better 

performance (as can be seen in Supplementary Figure 1).

4.4. Future directions

One of the motivations for single-trial classification is to provide real-time and real-

world interventions using brain-computer interfaces. While BCIs have been implemented 

successfully in applications such as smart wheelchairs and robotic exoskeletons, such 

systems have not been practically implemented in the memory domain, yet there have been 

some related attempts (Burke, Merkow, Jacobs, Kahana, & Zaghloul, 2015; DeBettencourt, 

Cohen, Lee, Norman, & Turk-Browne, 2015; Ezzyat et al., 2018). In this regard, this 

study provides some recommendations to improve classification performance, which is 

important as even minor improvements in a classifier’s performance can potentially result in 

practically and clinically meaningful developments in BCI device performance.

While classification performance in this study outperformed any previous non-invasive EEG 

studies of memory by between 5–12% (Astrand, 2018; Noh et al., 2014, 2018), addressing 

the aforementioned limitations could potentially increase performance even further. Ideally, 

the desired performance of a BCI system is 100%, which is almost certainly out of reach, 

as scalp EEG signals are noisy, and distinguishing some cognitive states might be difficult 

no matter how efficient the chosen methodology. As a result, sufficient performance is 

debatable, and it largely depends upon the specific problem, how costly a wrong prediction 

will be, and the preferences of the researchers and the individuals who intend to use the 

potential device. For example, for the hypothetical learning facilitator, even 80% accuracy 

may be valuable.

5. Conclusion

Using EEG recorded during performance of an episodic memory task in an adult lifespan 

sample, we systematically compared different methods of feature extraction, feature 

selection, and classifier in the same study to examine which methods work the best 

for various binary and multiclass classification problems. We found that no feature type 

outperforms others on a consistent basis, and it is crucial to extract multiple types of 

features to reach an optimal performance. The combination of filtering and sequential 

forward selection was the optimal method to select the effective features. Furthermore, 
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although the classifiers performed close to each other, LASSO was generally the highest-

performing option while naïve Bayes was faster than the other common options. Moreover, 

we tested these methods on three other datasets, and they outperformed alternative methods, 

supporting their generalizability. These findings are of remarkable value for understanding 

how the chosen method at each step of classification influences how efficiently different 

cognitive states can be discriminated and for selecting the most appropriate classification 

procedure in relevant investigations. In conclusion, we believe that our recommendations 

could provide a fruitful insight for cognitive researchers interested in performing single-trial 

classification and can be translated into the clinical realm for real-time detection of the 

cognitive states and providing the suitable interventions when necessary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task design for the episodic memory study. The scenes in this figure are taken from Creative 

Commons.
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Figure 2. 
The grand averages of hits and misses across participants over the four electrode regions 

including frontal right, frontal left, posterior left, and posterior right.
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Figure 3. 
Summary of cognitive problems to be assessed in this study.
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Figure 4. 
A summary of the used methodology
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Figure 5. 
Comparisons of balanced accuracy and running time for different feature selection methods 

and classifiers for item recognition (hits vs. misses). A) balanced accuracy; and B) running 

time (in seconds per trial). The violin plots indicate the distribution of data scores. The 

box plots are shown inside the violin plots. The average chance levels—the average of the 

95th percentile of the balanced accuracy values in the null distribution—across participants 

were in the range of 50.2 to 53.1% for all analyses. It should be noted that classification 

performances were significantly above the empirical chance levels across the participants for 

these analyses.
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Figure 6. 
Comparisons of balanced accuracy and running time for different feature selection methods 

and classifiers for multiclass classification problems. A) balanced accuracy for context 

memory; and B) running time (in seconds per trial) for context memory; C) balanced 

accuracy for context perception; D) running time (in seconds per trial) for context 

perception. The violin plots indicate the distribution of data scores. The box plots are shown 

inside the violin plots. The average chance levels—the average of the 95th percentile of the 

balanced accuracy values in the null distribution—across participants were in the range of 

25.2 to 27.8% for the 4-class analyses and in the range of 33.6 to 36.4% for the 3-class 

analyses. It should be noted that classification performances were significantly above the 

empirical chance levels across the participants for these analyses.
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Figure 7. 
Comparisons of balanced accuracy and running time for different feature selection methods 

and classifiers for EEG working memory: A) balanced accuracy; and B) running time 

(in seconds per trial). The violin plots indicate the distribution of data scores. The box 

plots are shown inside the violin plots. The average chance levels—the average of the 

95th percentile of the balanced accuracy values in the null distribution—across participants 

were in the range of 50.4 to 53.3% for all analyses. It should be noted that classification 

performances were significantly above the empirical chance levels across the participants for 

these analyses.
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Figure 8. 
Comparisons of balanced accuracy and running time for different feature selection methods 

and classifiers for EEG motor imagery: A) balanced accuracy; and B) running time (in 

seconds per trial). The violin plots indicate the distribution of data scores. The box plots 

are shown inside the violin plots. The average chance levels—the average of the 95th 

percentile of the balanced accuracy values in the null distribution—across participants 

were in the range of 50.6 to 53.2% for all analyses. It should be noted that classification 

performances were significantly above the empirical chance levels across the participants for 

these analyses.
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Figure 9. 
Comparisons of balanced accuracy and running time for different feature selection methods 

and classifiers for MEG working memory: A) balanced accuracy; and B) running time 

(in seconds per trial. The violin plots indicate the distribution of data scores. The box 

plots are shown inside the violin plots. The average chance levels—the average of the 

95th percentile of the balanced accuracy values in the null distribution—across participants 

were in the range of 50.2 to 53.6% for all analyses. It should be noted that classification 

performances were significantly above the empirical chance levels across the participants for 

these analyses.
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